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ABSTRACT

The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of
denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual
reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are super-
imposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm
is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal
inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness
distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing
the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation
of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the
NIFTy package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is val-
idated by the analysis of simulated data, including a realistic high energy photon count image showing a 32×32 arcmin2

observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved,
and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components.

Key words. methods: data analysis – methods: numerical – methods: statistical – techniques: image processing –
gamma-rays: general – X-rays: general

1. Introduction

An astronomical image might display multiple superim-
posed features, such as point sources, compact objects, dif-
fuse emission, or background radiation. The raw photon
count images delivered by high energy telescopes are far
from perfect; they suffer from shot noise and distortions
caused by instrumental effects. The analysis of such astro-
nomical observations demands elaborate denoising, decon-
volution, and decomposition strategies.

The data obtained by the detection of individual pho-
tons is subject to Poissonian shot noise which is more severe
for low count rates. This causes difficulty for the discrim-
ination of faint sources against noise, and makes their de-
tection exceptionally challenging. Furthermore, uneven or
incomplete survey coverage and complex instrumental re-
sponse functions leave imprints in the photon data. As a
result, the data set might exhibit gaps and artificial distor-
tions rendering the clear recognition of different features a
difficult task. Point-like sources are especially afflicted by
the instrument’s point spread function (PSF) that smooths
them out in the observed image, and therefore can cause
fainter ones to vanish completely in the background noise.

In addition to such noise and convolution effects, it is the
superposition of the different objects that makes their sep-
aration ambiguous, if possible at all. In astrophysics, pho-
ton emitting objects are commonly divided into two mor-

phological classes, diffuse sources and point sources. Dif-
fuse sources span rather smoothly across large fractions of
an image, and exhibit apparent internal correlations. Point
sources, on the contrary, are local features that, if observed
perfectly, would only appear in one pixel of the image. In
this work, we will not distinguish between diffuse sources
and background, both are diffuse contributions. Interme-
diate cases, which are sometimes classified as extended or
compact sources, are also not considered here.

The question arises of how to reconstruct the original
source contributions, the individual signals, that caused
the observed photon data. This task is an ill-posed inverse
problem without a unique solution. There are a number
of heuristic and probabilistic approaches that address the
problem of denoising, deconvolution, and decomposition in
partial or simpler settings.

SExtractor (Bertin & Arnouts 1996) is one of the
heuristic tools and the most prominent for identifying
sources in astronomy. Its popularity is mostly based on its
speed and easy operability. However, SExtractor pro-
duces a catalog of fitted sources rather than denoised and
deconvolved signal estimates. CLEAN (Högbom 1974) is
commonly used in radio astronomy and attempts a decon-
volution assuming there are only contributions from point
sources. Therefore, diffuse emission is not optimally recon-
structed in the analysis of real observations using CLEAN.
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Fig. 1. Illustration of a 1D reconstruction scenario with 1024 pixels. Panel (a) shows the superimposed diffuse and point-like signal
components (green solid line) and its observational response (gray contour). Panel (b) shows again the signal response representing
noiseless data (gray contour) and the generated Poissonian data (red markers). Panel (c) shows the reconstruction of the point-like
signal component (blue solid line), the diffuse one (orange solid line), its 2σ reconstruction uncertainty interval (orange dashed
line), and again the original signal response (gray contour). The point-like signal comprises 1024 point-sources of which only five
are not too faint. Panel (d) shows the reproduced signal response representing noiseless data (black solid line), its 2σ shot noise
interval (black dashed line), and again the data (gray markers).
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Multiscale extensions of CLEAN (Cornwell 2008; Rau &
Cornwell 2011) improve on this, but are also not prefect
(Junklewitz et al. 2013). Decomposition techniques for dif-
fuse backgrounds, based on the analysis of angular power
spectra have recently been proposed by Hensley et al.
(2013).

Inference methods, in contrast, investigate the proba-
bilistic relation between the data and the signals. Here,
the signals of interest are the different source contributions.
Probabilistic approaches allow a transparent incorporation
of model and a priori assumptions, but often result in com-
putationally heavier algorithms.

As an initial attempt, a maximum likelihood analysis
was proposed by Valdes (1982). In later work, maximum
entropy (Strong 2003) and minimum χ2 methods (e.g.,
Bouchet et al. 2013) were applied to the INTEGRAL/SPI
data reconstructing a single signal component, though. On
the basis of sparse regularization a number of techniques ex-
ploiting waveforms (based on the work by Haar 1910, 1911)
have proven successful in performing denoising and decon-
volution tasks in different settings (González-Nuevo et al.
2006; Willett & Nowak 2007; Dupe et al. 2009; Figueiredo &
Bioucas-Dias 2010; Dupé et al. 2011). For example, Schmitt
et al. (2010, 2012) analyzed simulated (single and multi-
channel) data from the Fermi γ-ray space telescope focus-
ing on the removal of Poisson noise and deconvolution or
background separation. Furthermore, a (generalized) mor-
phological component analysis denoised, deconvolved and
decomposed simulated radio data assuming Gaussian noise
statistics (Bobin et al. 2007; Chapman et al. 2013).

Still in the regime of Gaussian noise, Giovannelli &
Coulais (2005) derived a deconvolution algorithm for point
and extended sources minimizing regularized least squares.
They introduce an efficient convex regularization scheme at
the price of a priori unmotivated fine tuning parameters.
The fast algorithm PowellSnakes I/II by Carvalho et al.
(2009, 2012) is capable of analyzing multi-frequency data
sets and detecting point-like objects within diffuse emission
regions. It relies on matched filters using PSF templates and
Bayesian filters exploiting, among others, priors on source
position, size, and number. PowellSnakes II has been suc-
cessfully applied to the Planck data (Planck Collaboration
et al. 2011).

The approach closest to ours is the background-source
separation technique used to analyze the ROSAT data
(Guglielmetti et al. 2009). This Bayesian model is based
on a two-component mixture model that reconstructs ex-
tended sources and (diffuse) background concurrently. The
latter is, however, described by a spline model with a small
number of spline sampling points.

The strategy presented in this work aims at the si-
multaneous reconstruction of two signals, the diffuse and
point-like photon flux. Both fluxes contribute equally to the
observed photon counts, but their morphological imprints
are very different. The proposed algorithm, derived in the
framework of information field theory (IFT) (Enßlin et al.
2009; Enßlin 2013), therefore incorporates prior assump-
tions in form of a hierarchical parameter model. The fun-
damentally different morphologies of diffuse and point-like
contributions reflected in different prior correlations and
statistics. The exploitation of these different prior models is
crucial to the signal decomposition. In this work, we exclu-
sively consider Poissonian noise, in particular, but not ex-
clusively, in the low count rate regime, where the signal-to-

noise ratio becomes challengingly low. The D3PO algorithm
presented here targets the simultaneous denoising, deconvo-
lution, and decomposition of photon observations into two
signals, the diffuse and point-like photon flux. This task in-
cludes the reconstruction of the harmonic power spectrum
of the diffuse component from the data themselves. More-
over, the proposed algorithm provides a posteriori uncer-
tainty information on both inferred signals.

The fluxes from diffuse and point-like sources contribute
equally to the observed photon counts, but their morpho-
logical imprints are very different. The proposed algorithm,
derived in the framework of information field theory (IFT)
(Enßlin et al. 2009; Enßlin 2013, 2014), therefore incorpo-
rates prior assumptions in form of a hierarchical parameter
model. The fundamentally different morphologies of diffuse
and point-like contributions reflected in different prior cor-
relations and statistics. The exploitation of these different
prior models is key to the signal decomposition.

The diffuse and point-like signal are treated as two sepa-
rate signal fields. A signal field represents an original signal
appearing in nature; e.g., the physical photon flux distribu-
tion of one source component as a function of real space or
sky position. In theory, a field has infinitely many degrees
of freedom being defined on a continuous position space. In
computational practice, however, a field needs of course to
be defined on a finite grid. It is desirable that the signal
field is reconstructed independently from the grid’s resolu-
tion, except for potentially unresolvable features.1 We note
that the point-like signal field hosts one point source in ev-
ery pixel, however, most of them might be invisibly faint.
Hence, a complicated determination of the number of point
sources, as many algorithms perform, is not required in our
case.

The derivation of the algorithm makes use of a wide
range of Bayesian methods that are discussed below in de-
tail with regard to their implications and applicability. For
now, let us consider an example to emphasize the range
and performance of the D3PO algorithm. Figure 1 illus-
trates a reconstruction scenario in one dimension, where
the coordinate could be an angle or position (or time, or
energy) in order to represent a 1D sky (or a time series, or
an energy spectrum). The numerical implementation uses
the NIFTy2 package (Selig et al. 2013). NIFTy permits
an algorithm to be set up abstractly, independent of the
finally chosen topology, dimension, or resolution of the un-
derlying position space. In this way, a 1D prototype code
can be used for development, and then just be applied in
2D, 3D, or even on the sphere.

The remainder of this paper is structured as follows.
Sec. 2 discusses the inference on photon observations; i.e.,
the underlying model and prior assumptions. The D3PO al-
gorithm solving this inference problem by denoising, decon-

1 If the resolution of the reconstruction were increased gradu-
ally, the diffuse signal field might exhibit more and more small
scale features until the information content of the given data is
exhausted. From this point on, any further increase in resolution
would not change the signal field reconstruction significantly. In
a similar manner, the localization accuracy and number of de-
tections of point sources might increase with the resolution until
all relevant information of the data was captured. All higher res-
olution grids can then be regarded as acceptable representations
of the continuous position space.
2 NIFTy homepage http://www.mpa-garching.mpg.de/ift/
nifty/
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volution, and decomposition is derived in Sec. 3. In Sec. 4
the algorithm is demonstrated in a numerical application on
simulated high energy photon data. We conclude in Sec. 5.

2. Inference on photon observations

2.1. Signal inference

Here, a signal is defined as an unknown quantity of interest
that we want to learn about. The most important informa-
tion source on a signal is the data obtained in an observation
to measure the signal. Inferring a signal from an observa-
tional data set poses a fundamental problem because of the
presence of noise in the data and the ambiguity that several
possible signals could have produced the same data, even
in the case of negligible noise.

For example, given some image data like photon counts,
we want to infer the underlying photon flux distribution.
This physical flux is a continuous scalar field that varies
with respect to time, energy, and observational position.
The measured photon count data, however, is restricted by
its spatial and energy binning, as well as its limitations
in energy range and observation time. Basically, all data
sets are finite for practical reasons, and therefore cannot
capture all of the infinitely many degrees of freedom of the
underlying continuous signal field.

There is no exact solution to such signal inference prob-
lems, since there might be (infinitely) many signal field con-
figurations that could lead to the same data. This is why a
probabilistic data analysis, which does not pretend to calcu-
late the correct field configuration but provides expectation
values and uncertainties of the signal field, is appropriate
for signal inference.

Given a data set d, the a posteriori probability distri-
bution P (s|d) judges how likely a potential signal s is. This
posterior is given by Bayes’ theorem,

P (s|d) =
P (d|s)P (s)

P (d)
, (1)

as a combination of the likelihood P (d|s), the signal prior
P (s), and the evidence P (d), which serves as a normaliza-
tion. The likelihood characterizes how likely it is to mea-
sure data set d from a given signal field s. It covers all
processes that are relevant for the measurement of d. The
prior describes the knowledge about s without considering
the data, and should, in general, be less restrictive than the
likelihood.

IFT is a Bayesian framework for the inference of sig-
nal fields exploiting mathematical methods for theoretical
physics. A signal field, s = s(x), is a function of a continu-
ous position x in some position space Ω. In order to avoid a
dependence of the reconstruction on the partition of Ω, the
according calculus regarding fields is geared to preserve the
continuum limit (Enßlin 2013, 2014; Selig et al. 2013). In
general, we are interested in the a posteriori mean estimate
m of the signal field given the data, and its (uncertainty)
covariance D, defined as

m = 〈s〉(s|d) =

∫
Ds s P (s|d), (2)

D =
〈
(m− s)(m− s)†

〉
(s|d)

, (3)

where † denotes adjunction and 〈 · 〉(s|d) the expectation
value with respect to the posterior probability distribution
P (s|d).3

In the following, the posterior of the physical photon
flux distribution of two morphologically different source
components given a data set of photon counts is build up
piece by piece according to Eq. (1).

2.2. Poissonian likelihood

The images provided by astronomical high energy tele-
scopes typically consist of integer photon counts that are
binned spatially into pixels. Let di be the number of de-
tected photons, also called events, in pixel i, where i ∈
{1, . . . , Npix} ⊂ N.

The kind of signal field we would like to infer from such
data is the causative photon flux distribution. The photon
flux, ρ = ρ(x), is defined for each position x on the observa-
tional space Ω. In astrophysics, this space Ω is typically the
S2 sphere representing an all-sky view, or a region within
R2 representing an approximately plane patch of the sky.
The flux ρ might express different morphological features,
which can be classified into a diffuse and point-like compo-
nent. The exact definitions of the diffuse and point-like flux
should be specified a priori, without knowledge of the data,
and are addressed in Sec. 2.3.1 and 2.3.3, respectively. At
this point it shall suffices to say that the diffuse flux varies
smoothly on large spatial scales, while the flux originating
from point sources is fairly local. These two flux compo-
nents are superimposed,

ρ = ρdiffuse + ρpoint−like = ρ0 (es + eu) , (4)

where we introduced the dimensionless diffuse and point-
like signal fields, s and u, and the constant ρ0 which absorbs
the physical dimensions of the photon flux; i.e., events per
area per energy and time interval. The exponential function
in Eq. (4) is applied componentwise. In this way, we natu-
rally account for the strict positivity of the photon flux at
the price of a non-linear change of variables, from the flux
to its natural logarithm.

A measurement apparatus observing the photon flux ρ
is expected to detect a certain number of photons λ. This
process can be modeled by a linear response operator R0

as follows,

λ = R0ρ = R (es + eu) , (5)

where R = R0ρ0. This reads for pixel i,

λi =

∫
Ω

dx Ri(x)
(

es(x) + eu(x)
)
. (6)

The response operator R0 comprises all aspects of the mea-
surement process; i.e., all instrument response functions.
This includes the survey coverage, which describes the in-
strument’s overall exposure to the observational area, and
the instrument’s PSF, which describes how a point source
is imaged by the instrument.

The superposition of different components and the tran-
sition from continuous coordinates to some discrete pix-
elization, cf. Eq. (6), cause a severe loss of information
3 This expectation value is computed by a path integral,

∫
Ds,

over the complete phase space of the signal field s; i.e., all pos-
sible field configurations.
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about the original signal fields. In addition to that, mea-
surement noise distorts the signal’s imprint in the data.
The individual photon counts per pixel can be assumed to
follow a Poisson distribution P each. Therefore, the likeli-
hood of the data d given an expected number of events λ is
modeled as a product of statistically independent Poisson
processes,

P (d|λ) =
∏
i

P(di, λi) =
∏
i

1

di!
λdii e−λi . (7)

The Poisson distribution has a signal-to-noise ratio of
√
λ

which scales with the expected number of photon counts.
Therefore, Poissonian shot noise is most severe in regions
with low photon fluxes. This makes the detection of faint
sources in high energy astronomy a particularly challenging
task, as X- and γ-ray photons are sparse.

The likelihood of photon count data given a two compo-
nent photon flux is hence described by the Eqs. (5) and (7).
Rewriting this likelihood P (d|s,u) in form of its negative
logarithm yields the information Hamiltonian H(d|s,u),4

H(d|s,u) = − logP (d|s,u) (8)

= H0 + 1†λ− d† log(λ) (9)

= H0 + 1†R (es + eu)− d† log (R (es + eu)) ,
(10)

where the ground state energy H0 comprises all terms con-
stant in s and u, and 1 is a constant data vector being 1
everywhere.

2.3. Prior assumptions

The diffuse and point-like signal fields, s and u, contribute
equally to the likelihood defined by Eq. (10), and thus leav-
ing it completely degenerate. On the mere basis of the likeli-
hood, the full data set could be explained by the diffuse sig-
nal alone, or only by point-sources, or any other conceivable
combination. In order to downweight intuitively implausible
solutions, we introduce priors. The priors discussed in the
following address the morphology of the different photon
flux contributions, and define diffuse and point-like in the
first place. These priors aid the reconstruction by provid-
ing some remedy for the degeneracy of the likelihood. The
likelihood describes noise and convolution properties, and
the prior describe the individual morphological properties.
Therefore, the denoising and deconvolution of the data to-
wards the total photon flux ρ is primarily likelihood driven,
but for a decomposition of the total photon flux into ρ(s)

and ρ(u), the signal priors are imperative.

2.3.1. Diffuse component

The diffuse photon flux, ρ(s) = ρ0es, is strictly positive and
might vary in intensity over several orders of magnitude. Its
morphology shows cloudy patches with smooth fluctuations
across spatial scales; i.e., one expects similar values of the
diffuse flux in neighboring locations. In other words, the dif-
fuse component exhibits spatial correlations. A log-normal
model for ρ(s) satisfies those requirements according to the
4 Throughout this work we define H( · ) = − logP ( · ), and ab-
sorb constant terms into a normalization constant H0 in favor
of clarity.

maximum entropy principle (Oppermann et al. 2012; Kin-
ney 2013). If the diffuse photon flux follows a multivariate
log-normal distribution, the diffuse signal field s obeys a
multivariate Gaussian distribution G,

P (s|S) = G(s,S) =
1√

det[2πS]
exp

(
−1

2
s†S−1s

)
, (11)

with a given covariance S =
〈
ss†
〉

(s|S)
. This covariance

describes the strength of the spatial correlations, and thus
the smoothness of the fluctuations.

A convenient parametrization of the covariance S can
be found, if the signal field s is a priori not known to distin-
guish any position or orientation axis; i.e., its correlations
only depend on relative distances. This is equivalent to as-
sume s to be statistically homogeneous and isotropic. Under
this assumption, S is diagonal in the harmonic basis5 of the
position space Ω such that

S =
∑
k

eτkSk, (12)

where τk are spectral parameters and Sk are projections
onto a set of disjoint harmonic subspaces of Ω. These sub-
spaces are commonly denoted as spectral bands or harmonic
modes. The set of spectral parameters, τ = {τk}k, is then
the logarithmic power spectrum of the diffuse signal field s
with respect to the chosen harmonic basis denoted by k.

However, the diffuse signal covariance is in general un-
known a priori. This requires the introduction of another
prior for the covariance, or for the set of parameters τ
describing it adequately. This approach of hyperpriors on
prior parameters creates a hierarchical parameter model.

2.3.2. Unknown power spectrum

The lack of knowledge of the power spectrum, requires its
reconstruction from the same data the signal is inferred
from (Wandelt et al. 2004; Jasche et al. 2010; Enßlin &
Frommert 2011; Jasche & Wandelt 2013). Therefore, two
a priori constraints for the spectral parameters τ , which
describe the logarithmic power spectrum, are incorporated
in the model.

The power spectrum is unknown and might span over
several orders of magnitude. This implies a logarithmically
uniform prior for each element of the power spectrum, and
a uniform prior for each spectral parameter τk, respectively.
We initially assume independent inverse-Gamma distribu-
tions I for the individual elements,

P (eτ |α, q) =
∏
k

I(eτk , αk, qk) (13)

=
∏
k

qαk−1
k

Γ(αk − 1)
e−(αkτk+qke−τk), (14)

and hence

Pun(τ |α, q) =
∏
k

I(eτk , αk, qk)

∣∣∣∣deτk

dτk

∣∣∣∣ (15)

∝ exp
(
− (α− 1)†τ − q†e−τ

)
, (16)

5 The basis in which the Laplace operator is diagonal is denoted
harmonic basis. If Ω is a n-dimensional Euclidean space Rn or
Torus T n, the harmonic basis is the Fourier basis; if Ω is the S2

sphere, the harmonic basis is the spherical harmonics basis.
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where α = {αk}k and q = {qk}k are the shape and scale
parameters, and Γ denotes the Gamma function. In the
limit of αk → 1 and qk → 0 ∀k, the inverse-Gamma distri-
butions become asymptotically flat on a logarithmic scale,
and thus Pun constant.6 Small non-zero scale parameters,
0 < qk, provide lower limits for the power spectrum that,
in practice, lead to more stable inference algorithms.

So far, the variability of the individual elements of
the power spectrum is accounted for, but the question
about their correlations has not been addressed. Empir-
ically, power spectra of a diffuse signal field do not ex-
hibit wild fluctuation or change drastically over neighboring
modes. They rather show some sort of spectral smoothness.
Moreover, for diffuse signal fields that were shaped by local
and causal processes, we might expect a finite correlation
support in position space. This translates into a smooth
power spectrum. In order to incorporate spectral smooth-
ness, we employ a prior introduced by Enßlin & Frommert
(2011); Oppermann et al. (2012). This prior is based on the
second logarithmic derivative of the spectral parameters τ ,
and favors power spectra that obey a power law. It reads

Psm(τ |σ) ∝ exp

(
−1

2
τ †Tτ

)
, (17)

with

τ †Tτ =

∫
d(log k)

1

σ2
k

(
∂2τk

∂(log k)2

)2

, (18)

where σ = {σk}k are Gaussian standard deviations speci-
fying the tolerance against deviation from a power-law be-
havior of the power spectrum. A choice of σk = 1 ∀k would
typically allow for a change in the power law’s slope of 1
per e-fold in k. In the limit of σk → ∞ ∀k, no smoothness
is enforced upon the power spectrum.

The resulting prior for the spectral parameters is given
by the product of the priors discussed above,

P (τ |α, q,σ) = Pun(τ |α, q) Psm(τ |σ). (19)

The parameters α, q and σ are considered to be given as
part of the hierarchical Bayesian model, and provide a flex-
ible handle to model our knowledge on the scaling and
smoothness of the power spectrum.

2.3.3. Point-like component

The point-like photon flux, ρ(u) = ρ0eu, is supposed to
originate from very distant astrophysical sources. These
sources appear morphologically point-like to an observer
because their actual extent is negligible given the extreme
distances. This renders point sources to be spatially local
phenomena. The photon flux contributions of neighboring
point sources can (to zeroth order approximation) be as-
sumed to be statistically independent of each other. Even
if the two sources are very close on the observational plane,
their physical distance might be huge. Even in practice,
the spatial cross-correlation of point sources is negligible.
Therefore, statistically independent priors for the photon
flux contribution of each point-source are assumed in the
following.
6 If P (τk = log z) = const., then a substitution yields P (z) =
P (log z) |d(log z)/dz| ∝ z−1 ∼ I(z, α→ 1, q → 0).

Because of the spatial locality of a point source, the
corresponding photon flux signal is supposed to be confined
to a single spot, too. If the point-like signal field, defined
over a continuous position space Ω, is discretized properly7,
this spot is sufficiently identified by an image pixel in the
reconstruction. A discretization, ρ(x ∈ Ω) → (ρx)x, is an
inevitable step since the algorithm is to be implemented in
a computer environment anyway. Nevertheless, we have to
ensure that the a priori assumptions do not depend on the
chosen discretization but satisfy the continuous limit.

Therefore, the prior for the point-like signal component
factorizes spatially,

P (ρ(u)) =
∏
x

P (ρ(u)
x ), (20)

but the functional form of the priors are yet to be deter-
mined. This model allows the point-like signal field to host
one point source in every pixel. Most of these point sources
are expected to be invisibly faint contributing negligibly
to the total photon flux. However, the point sources which
are just identifiable from the data are pinpointed in the re-
construction. In this approach, there is no necessity for a
complicated determination of the number and position of
sources.

For the construction of a prior, that the photon flux is a
strictly positive quantity also needs to be considered. Thus,
a simple exponential prior,

P (ρ(u)
x ) ∝ exp

(
−ρ(u)

x /ρ0

)
, (21)

has been suggested (e.g., Guglielmetti et al. 2009). It has
the advantage of being (easily) analytically treatable, but
its physical implications are questionable. This distribution
strongly suppresses high photon fluxes in favor of lower
ones. The maximum entropy prior, which is also often ap-
plied, is even worse because it corresponds to a brightness
distribution,8

P (ρ(u)
x ) ∝

(
ρ(u)
x /ρ0

)(−ρ(u)x /ρ0)
. (22)

The following (rather crude) consideration might motivate
a more astrophysical prior. Say the universe hosts a ho-
mogeneous distribution of point sources. The number of
point sources would therefore scale with the observable
volume; i.e., with distance cubed. Their apparent bright-
ness, which is reduced because of the spreading of the light
rays; i.e., a proportionality to the distance squared. Conse-
quently, a power-law behavior between the number of point
sources and their brightness with a slope β = 3

2 is to be ex-
pected (Fomalont 1968; Malyshev & Hogg 2011). However,
such a plain power law diverges at 0, and is not necessar-
ily normalizable. Furthermore, Galactic and extragalactic
sources cannot be found in arbitrary distances owing to
the finite size of the Galaxy and the cosmic (past) light
cone. Imposing an exponential cut-off above 0 onto the
power law yields an inverse-Gamma distribution, which has
been shown to be an appropriate prior for point-like photon
fluxes (Guglielmetti et al. 2009; Carvalho et al. 2009, 2012).
7 The numerical discretization of information fields is described
in great detail in Selig et al. (2013).
8 The so-called maximum entropy regularization∑
x(ρ

(u)
x /ρ0) log(ρ

(u)
x /ρ0) of the log-likelihood can be regarded

as log-prior, cf. Eqs. (20) and (22).
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The prior for the point-like signal field is therefore de-
rived from a product of independent inverse-Gamma distri-
butions,9

P (ρ(u)|β,η) =
∏
x

I(ρ(u)
x , βx, ρ0ηx) (23)

=
∏
x

(ρ0ηx)βx−1

Γ(βx − 1)

(
ρ(u)
x

)−βx
exp

(
−ρ0ηx

ρ
(u)
x

)
,

(24)

yielding

P (u|β,η) =
∏
x

I(ρ0eux , βk, ρ0ηk)

∣∣∣∣dρ0eux

dux

∣∣∣∣ (25)

∝ exp
(
− (β − 1)†u− η†e−u

)
, (26)

where β = {βx}x and η = {ηx}x are the shape and scale
parameters. The latter is responsible for the cut-off of van-
ishing fluxes, and should be chosen adequately small in
analogy to the spectral scale parameters q. The determina-
tion of the shape parameters is more difficile. The geomet-
rical argument above suggests a universal shape parameter,
βx = 3

2 ∀x. A second argument for this value results from
demanding a priori independence of the discretization. If
we choose a coarser resolution that would add up the flux
from two point sources at merged pixels, then our prior
should still be applicable. The universal value of 3

2 indeed
fulfills this requirement as shown in Appendix A. There it
is also shown that η has to be chosen resolution dependent,
though.

2.4. Parameter model

Figure 2 gives an overview of the parameter hierarchy of
the suggested Bayesian model. The data d is given, and the
diffuse signal field s and the point-like signal field u shall
be reconstructed from that data. The logarithmic power
spectrum τ is a set of nuisance parameters that also need
to be reconstructed from the data in order to accurately
model the diffuse flux contributions. The model parameters
form the top layer of this hierarchy and are given to the
reconstruction algorithm. This set of model parameters can
be boiled down to five scalars, namely α, q, σ, β, and η, if
one defines α = α1, etc. The incorporation of the scalars in
the inference is possible in theory, but this would increase
the computational complexity dramatically.

We discussed reasonable values for these scalars to be
chosen a priori. If additional information sources, such
as theoretical power spectra or object catalogs, are avail-
able the model parameters can be adjusted accordingly. In
Sec. 4, different parameter choices for the analysis of simu-
lated data are investigated.

3. Denoising, deconvolution, and decomposition

The likelihood model, describing the measurement process,
and the prior assumptions for the signal fields and the power

9 A possible extension of this prior model that includes spa-
tial correlations would be an inverse-Wishart distribution for
diag[ρ(u)].

α, q σ β, η

τ

s u

ρ

λ

d

Fig. 2. Graphical model of the model parameters α, q, σ, β,
and η, the logarithmic spectral parameters τ , the diffuse signal
field s, the point-like signal field u, the total photon flux ρ, the
expected number of photons λ, and the observed photon count
data d.

spectrum of the diffuse component yield a well-defined in-
ference problem. The corresponding posterior is given by

P (s, τ ,u|d) =
P (d|s,u) P (s|τ ) P (τ |α, q, σ) P (u|β, η)

P (d)
,

(27)

which is a complex form of Bayes’ theorem (1).
Ideally, we would now calculate the a posteriori expec-

tation values and uncertainties according to Eqs. (2) and
(3) for the diffuse and point-like signal fields, s and u, as
well as for the logarithmic spectral parameters τ . However,
an analytical evaluation of these expectation values is not
possible because of the complexity of the posterior.

The posterior is non-linear in the signal fields and, ex-
cept for artificially constructed data, non-convex. It, how-
ever, is more flexible and therefore allows for a more com-
prehensive description of the parameters to be inferred
(Kirkpatrick et al. 1983; Geman & Geman 1984).

Numerical approaches involving Markov chain Monte
Carlo methods (Metropolis & Ulam 1949; Metropolis et al.
1953) are possible, but hardly feasible because of the huge
parameter phase space. Nevertheless, similar problems have
been addressed by elaborate sampling techniques (Wan-
delt et al. 2004; Jasche et al. 2010; Jasche & Kitaura 2010;
Jasche & Wandelt 2013).

Here, two approximative algorithms with lower compu-
tational costs are derived. The first one uses the maximum
a posteriori (MAP) approximation, the second one mini-
mizes the Gibbs free energy of an approximate posterior
ansatz in the spirit of variational Bayesian methods. The
fidelity and accuracy of these two algorithms are compared
in a numerical application in Sec. 4.

3.1. Posterior maximum

The posterior maximum and mean coincide, if the posterior
distribution is symmetric and single peaked. In practice,
this often holds – at least in good approximation –, so that
the maximum a posteriori approach can provide suitable es-
timators. This can either be achieved using a δ-distribution
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at the posterior’s mode,

〈s〉(s|d)

MAP-δ
≈

∫
Ds s δ(s− smode), (28)

or using a Gaussian approximation around this point,

〈s〉(s|d)

MAP-G
≈

∫
Ds s G(s− smode,Dmode), (29)

Both approximations require us to find the mode, which is
done by extremizing the posterior.

Instead of the complex posterior distribution, it is con-
venient to consider the information Hamiltonian, defined
by its negative logarithm,

H(s, τ ,u|d) = − logP (s, τ ,u|d) (30)

= H0 + 1†R (es + eu)− d† log (R (es + eu))

+
1

2
log (det [S]) +

1

2
s†S−1s (31)

+ (α− 1)†τ + q†e−τ +
1

2
τ †Tτ

+ (β − 1)†u+ η†e−u,

where all terms constant in s, τ , and u have been absorbed
into a ground state energy H0, cf. Eqs. (7), (11), (19), and
(26), respectively.

The MAP solution, which maximizes the posterior, min-
imizes the Hamiltonian. This minimum can thus be found
by taking the first (functional) derivatives of the Hamil-
tonian with respect to s, τ , and u and equating them
with zero. Unfortunately, this yields a set of implicit,
self-consistent equations rather than an explicit solution.
However, these equations can be solved by an iterative
minimization of the Hamiltonian using a steepest descent
method for example, see Sec. 3.4 for details.

In order to better understand the structure of the
MAP solution, we consider the minimum (s, τ ,u) =
(m(s), τ ?,m(u)). The resulting filter formulas for the dif-
fuse and point-like signal field read

∂H

∂s

∣∣∣∣
min

= 0 = (1− d/l)†R ∗ em
(s)

+ S?
−1
m(s), (32)

∂H

∂u

∣∣∣∣
min

= 0 = (1− d/l)†R ∗ em
(u)

+ β − 1− η ∗ e−m
(u)

,

(33)

with

l = R
(

em
(s)

+ em
(u)
)
, (34)

S? =
∑
k

eτ
?
kSk. (35)

Here, ∗ and / denote componentwise multiplication and di-
vision, respectively. The first term in Eq. (32) and (33),
which comes from the likelihood, vanishes in case l = d.
We note that l = λ|min describes the most likely number of
photon counts, not the expected number of photon counts
λ = 〈d〉(d|s,u), cf. Eqs. (5) and (7). Disregarding the reg-
ularization by the priors, the solution would overfit; i.e.,
noise features are partly assigned to the signal fields in or-
der to achieve an unnecessarily close agreement with the

data. However, the a priori regularization suppresses this
tendency to some extend.

The second derivative of the Hamiltonian describes the
curvature around the minimum, and therefore approxi-
mates the (inverse) uncertainty covariance,

∂2H

∂s∂s†

∣∣∣∣
min

≈D(s)−1
,

∂2H

∂u∂u†

∣∣∣∣
min

≈D(u)−1
. (36)

The closed form of D(s) and D(u) is given explicitly in
Appendix B.

The filter formula for the power spectrum, which is de-
rived from a first derivative of the Hamiltonian with respect
to τ , yields

eτ
?

=
q + 1

2

(
tr
[
m(s)m(s)†S−1

k

])
k

γ + Tτ ?
, (37)

where γ = (α − 1) + 1
2

(
tr
[
SkSk

−1
])
k
. This formula is in

accordance with the results by Enßlin & Frommert (2011);
Oppermann et al. (2012). It has been shown by the former
authors that such a filter exhibits a perception threshold;
i.e., on scales where the signal-response-to-noise ratio drops
below a certain bound the reconstructed signal power be-
comes vanishingly low. This threshold can be cured by a
better capture of the a posteriori uncertainty structure.

3.2. Posterior approximation

In order to overcome the analytical infeasibility as well as
the perception threshold, we seek an approximation to the
true posterior. Instead of approximating the expectation
values of the posterior, approximate posteriors are inves-
tigated in this section. In case the approximation is good,
the expectation values of the approximate posterior should
then be close to the real ones.

The posterior given by Eq. (27) is inaccessible because
of the entanglement of the diffuse signal field s, its loga-
rithmic power spectrum τ , and the point-like signal field
u. The involvement of τ can been simplified by a mean
field approximation,

P (s, τ ,u|d) ≈ Q = Qs(s,u|µ,d) Qτ (τ |µ,d), (38)

where µ denotes an abstract mean field mediating some
information between the signal field tuple (s,u) and τ that
are separated by the product ansatz in Eq. (38). This mean
field is fully determined by the problem, as it represents
effective (rather than additional) degrees of freedom. It is
only needed implicitly for the derivation, an explicit formula
can be found in Appendix C.3, though.

Since the a posteriori mean estimates for the signal
fields and their uncertainty covariances are of primary in-
terest, a Gaussian approximation for Qs that accounts for
correlation between s and u would be sufficient. Hence, our
previous approximation is extended by setting

Qs(s,u|µ,d) = G(ϕ,D), (39)

with

ϕ =

(
s−m(s)

u−m(u)

)
, D =

(
D(s) D(su)

D(su)† D(u)

)
. (40)
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This Gaussian approximation is also a convenient choice
in terms of computational complexity because of its simple
analytic structure.

The goodness of the approximation P ≈ Q can be
quantified by an information theoretical measure, see Ap-
pendix C.1. The Gibbs free energy of the inference problem,

G =
〈
H(s, τ ,u|d)

〉
Q
−
〈
− logQ(s, τ ,u|d)

〉
Q
, (41)

which is equivalent to the Kullback-Leibler divergence
DKL(Q,P ), is chosen as such a measure (Enßlin & Weig
2010).

In favor of comprehensibility, we suppose the solution
for the logarithmic power spectrum τ ? is known for the
moment. The Gibbs free energy is then calculated by plug-
ging in the Hamiltonian, and evaluating the expectation
values10,

G = G0 +
〈
H(s,u|d)

〉
Qs
− 1

2
log (det [D]) (42)

= G1 + 1†l− d†
{

log(l)−
∞∑
ν=2

(−1)ν

ν

〈
(λ/l− 1)

ν 〉
Qs

}

+
1

2
m(s)†S?

−1
m(s) +

1

2
tr
[
D(s)S?

−1
]

(43)

+ (β − 1)†m(u) + η†e−m
(u)+

1
2 D̂

(u)

− 1

2
log (det [D]) ,

with

λ = R (es + eu) , (44)

l = 〈λ〉Qs = R

(
em

(s)+
1
2 D̂

(s)

+ em
(u)+

1
2 D̂

(u)
)
, (45)

S? =
∑
k

eτ
?
kSk, and (46)

D̂ = diag [D] . (47)

Here, G0 and G1 carry all terms independent of s and u.
In comparison to the Hamiltonian given in Eq. (31), there
are a number of correction terms that now also consider the
uncertainty covariances of the signal estimates properly. For
example, the expectation values of the photon fluxes differ
comparing l in Eq. (34) and (45) where it now describes
the expectation value of λ over the approximate posterior.
In case l = λ the explicit sum in Eq. (43) vanishes. Since
this sum includes powers of

〈
λν>2

〉
Qs

its evaluation would
require all entries of D to be known explicitly. In order to
keep the algorithm computationally feasible, this sum shall
hereafter be neglected. This is equivalent to truncating the
corresponding expansion at second order; i.e., ν = 2. It can
be shown that, in consequence of this approximation, the
cross-correlation D(su) equals zero, and D becomes block
diagonal.
10 The second likelihood term in Eq. (43), d† log(λ), is thereby
expanded according to

log(x) = log 〈x〉 −
∞∑
ν=2

(−1)ν

ν

〈(
x

〈x〉 − 1

)ν〉
≈ log 〈x〉+O

(〈
x2
〉)
,

under the assumption x ≈ 〈x〉.

Without these second order terms, the Gibbs free energy
reads

G = G1 + 1†l− d† log(l)

+
1

2
m(s)†S?

−1
m(s) +

1

2
tr
[
D(s)S?

−1
]

(48)

+ (β − 1)†m(u) + η†e−m
(u)+

1
2 D̂

(u)

− 1

2
log
(

det
[
D(s)

])
− 1

2
log
(

det
[
D(u)

])
.

Minimizing the Gibbs free energy with respect to m(s),
m(u), D(s), and D(u) would optimize the fitness of the
posterior approximation P ≈ Q. Filter formulas for the
Gibbs solution can be derived by taking the derivative of G
with respect to the approximate mean estimates,

∂G

∂m(s)
= 0 = (1− d/l)†R ∗ em

(s)+
1
2 D̂

(s)

+ S?
−1
m(s),

(49)
∂G

∂m(u)
= 0 = (1− d/l)†R ∗ em

(u)+
1
2 D̂

(u)

(50)

+ β − 1− η ∗ e−m
(u)+

1
2 D̂

(u)

,

This filter formulas again account for the uncertainty of the
mean estimates in comparison to the MAP filter formulas
in Eq. (32) and (33). The uncertainty covariances can be
constructed by either taking the second derivatives,

∂2G

∂m(s)∂m(s)†
≈D(s)−1

,
∂2G

∂m(u)∂m(u)†
≈D(u)−1

, (51)

or setting the first derivatives of G with respect to the un-
certainty covariances equal to zero matrices,

∂G

∂D
(s)
xy

= 0,
∂G

∂D
(u)
xy

= 0. (52)

The closed form of D(s) and D(u) is given explicitly in
Appendix B.

So far, the logarithmic power spectrum τ ?, and with
it S?, have been supposed to be known. The mean field
approximation in Eq. (38) does not specify the approximate
posterior Qτ (τ |µ,d), but it can be retrieved by variational
Bayesian methods (Jordan et al. 1999; Wingate & Weber
2013), according to the procedure detailed in Appendix C.2.
The subsequent Appendix C.3 discusses the derivation of
an solution for τ by extremizing Qτ . This result, which
was also derived in Oppermann et al. (2012), applies to the
inference problem discussed here, yielding

eτ
?

=
q + 1

2

(
tr
[(
m(s)m(s)† +D(s)

)
S−1
k

])
k

γ + Tτ ?
. (53)

Again, this solution includes a correction term in compar-
ison to the MAP solution in Eq. (37). Since D(s) is pos-
itive definite, it contributes positive to the (logarithmic)
power spectrum, and therefore reduces the possible percep-
tion threshold further.

We note that this is a minimal Gibbs free energy so-
lution that maximizes Qτ . A proper calculation of 〈τ 〉Qτ
might include further correction terms, but their derivation
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is not possible in closed form. Moreover, the above used dif-
fuse signal covariance S?−1 should be replaced by

〈
S−1

〉
Qτ

adding further correction terms to the filter formulas.
In order to keep the computational complexity on a fea-

sible level, all these higher order corrections are not con-
sidered here. The detailed characterization of their impli-
cations and implementation difficulties is left for future in-
vestigation.

3.3. Physical flux solution

To perform calculations on the logarithmic fluxes is con-
venient for numerical reasons, but it is the physical fluxes
that are actually of interest to us. Given the chosen approxi-
mation, we can compute the posterior expectation values of
the diffuse and point-like photon flux, ρ(s) and ρ(u), straight
forwardly,〈
ρ( · )

〉
P

MAP-δ
≈

〈
ρ( · )

〉
δ

= ρ0em
( · )
mode , (54)

MAP-G
≈

〈
ρ( · )

〉
G

= ρ0em
( · )
mode+

1
2 D̂

( · )
mode , (55)

Gibbs
≈

〈
ρ( · )

〉
Q

= ρ0em
( · )
mean+

1
2 D̂

( · )
mean , (56)

in accordance with Eq. (28), (29), or (38), respectively.
Those solutions differ from each other in terms of the in-
volvement of the posterior’s mode or mean, and in terms of
the inclusion of the uncertainty information, see subscripts.

In general, the mode approximation holds for symmet-
ric, single peaked distributions, but can perform poorly in
other cases (e.g., Enßlin & Frommert 2011). The exact form
of the posterior considered here is highly complex because
of the many degrees of freedom. In a dimensionally reduced
frame, however, the posterior appears single peaked and
exhibits a negative skewness.11 Although this is not neces-
sarily generalizable, it suggest a superiority of the posterior
mean compared to the MAP because of the asymmetry of
the distribution. Nevertheless, the MAP approach is com-
putationally cheaper compared to the Gibbs approach that
requires permanent knowledge of the uncertainty covari-
ance.

The uncertainty of the reconstructed photon flux can be
approximated as for an ordinary log-normal distribution,〈
ρ( · )2

〉
P
−
〈
ρ( · )

〉2

P

MAP
≈

〈
ρ( · )

〉2

G

(
eD̂

( · )
mode − 1

)
, (57)

Gibbs
≈

〈
ρ( · )

〉2

Q

(
eD̂

( · )
mean − 1

)
, (58)

where the square root of the latter term would describe the
relative uncertainty.

3.4. Imaging algorithm

The problem of denoising, deconvolving, and decomposing
photon observations is a non-trivial task. Therefore, this
section discusses the implementation of the D3PO algo-
rithm given the two sets of filter formulas derived in Sec. 3.1
and 3.2, respectively.
11 For example, the posterior P (s|d) for a one-dimensional dif-
fuse signal is proportional to exp(− 1

2
s2 + ds− exp(s)), whereby

all other parameters are fixed to unity. Analogously, P (u|d) ∝
exp(du− 2 cosh(u)).

The information Hamiltonian, or equivalently the Gibbs
free energy, are scalar quantities defined over a huge phase
space of possible field and parameter configurations includ-
ing, among others, the elements of m(s) and m(u). If we
only consider those, and no resolution refinement from data
to signal space, two numbers need to be inferred from one
data value each. Including τ and the uncertainty covari-
ances D(s) and D(u) in the inference, the problem of un-
derdetermined degrees of freedom gets worse. This is re-
flected in the possibility of a decent number of local minima
in the non-convex manifold landscape of the codomain of
the Hamiltonian, or Gibbs free energy, respectively (Kirk-
patrick et al. 1983; Geman & Geman 1984; Giovannelli &
Coulais 2005). The complexity of the inference problem
goes back to the, in general, non-linear entanglement be-
tween the individual parameters.

The D3PO algorithm is based on an iterative optimiza-
tion scheme, where certain subsets of the problem are op-
timized alternately instead of the full problem at once.
Each subset optimization is designed individually, see be-
low. The global optimization cycle is in some degree sensi-
tive to the starting values because of the non-convexity of
the considered potential; i.e., the information Hamiltonian
or Gibbs free energy, respectively. We can find such appro-
priate starting values by solving the inference problem in a
reduced frame in advance, see below. So far, a step-by-step
guide of the algorithm looks like the following.

1. Initialize the algorithm with primitive starting values;
e.g., m(s)

x = m
(u)
x = 0, D(s)

xy = D
(u)
xy = δxy, and

τ?k = log(k−2). – Those values are arbitrary. Although
the optimization is rather insensitive to them, inappro-
priate values can cripple the algorithm for numerical
reasons because of the high non-linearity of the infer-
ence problem.

2. Optimize m(s), the diffuse signal field, coarsely. – The
preliminary optimization shall yield a rough estimate of
the diffuse only contribution. This can be achieved by
reconstructing a coarse screened diffuse signal field that
only varies on large scales; i.e., limiting the bandwidth
of the diffuse signal in its harmonic basis. Alternatively,
obvious point sources in the data could be masked out
by introducing an artificial mask into the response, if
feasible.

3. Optimize m(u), the point-like signal field, locally. –
This initial optimization shall approximate the bright-
est, most obvious, point sources that are visible in the
data image by eye. Their current disagreement with the
data dominates the considered potential, and introduces
some numerical stiffness. The gradient of the potential
can be computed according to Eq. (33) or (50), and its
minima will be at the expected position of the brightest
point source which has not been reconstructed, yet. It is
therefore very efficient to increase m(u) at this location
directly until the sign of the gradient flips, and repeat
this procedure until the obvious point sources are fit.

4. Optimize m(u), the point-like signal field. – This task
can be done by a steepest descent minimization of the
potential combined with a line search following the
Wolfe conditions (Nocedal & Wright 2006). The poten-
tials can be computed according to Eq. (31) or (43)
neglecting terms independent ofm(u), and the gradient
according to Eq. (33) or (50). A more sophisticated min-
imization scheme, such as a non-linear conjugate gradi-
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration of the data and noiseless, but reconvolved, signal responses of the reconstructions. Panel (a) shows the data
from a mock observation of a 32× 32 arcmin2 patch of the sky with a resolution of 0.1 arcmin corresponding to a total of 102 400
pixels. The data had been convolved with a Gaussian-like PSF (FWHM ≈ 0.2 arcmin = 2 pixels, finite support of 1.1 arcmin
= 11 pixels) and masked because of an uneven exposure. Panel (b) shows the centered convolution kernel. Panel (c) shows the
exposure mask. The bottom panels show the reconvolved signal response R 〈ρ〉 of a reconstruction using a different approach each,
namely (d) MAP-δ, (e) MAP-G, and (f) Gibbs. All reconstructions shown here and in the following figures used the same model
parameters: α = 1, q = 10−12, σ = 10, β = 3

2
, and η = 10−4.

ent (Shewchuk 1994), is conceivable but would require
the application of the full Hessian, cf. step 5. In the first
run, it might be sufficient to restrict the optimization
to the locations identified in step 3.

5. Update D̂
(u)

, the point-like uncertainty variance, in
case of a Gibbs approach. – It is not feasible to com-
pute the full uncertainty covariance D(u) explicitly in
order to extract its diagonal. A more elegant way is to
apply a probing technique relying on the application of
D(u) to random fields ξ that project out the diagonal
(Hutchinson 1989; Selig et al. 2012). The uncertainty
covariance is given as the inverse Hessian by Eq. (36) or
(51), and should be symmetric and positive definite. For
that reason, it can be applied to a field using a conjugate
gradient (Shewchuk 1994); i.e., solving (D(u))−1y = ξ
for y. However, if the current phase space position is far
away from the minimum, the Hessian is not necessar-
ily positive definite. One way to overcome this temporal
instability, would be to introduce a Levenberg damp-

ing in the Hessian (inspired by Transtrum et al. 2010;
Transtrum & Sethna 2012).

6. Optimize m(s), the diffuse signal field. – An analog
scheme as in step 4 using steepest descent and Wolfe
conditions is effective. The potentials can be computed
according to Eq. (31) or (43) neglecting terms indepen-
dent of m(s), and the gradient according to Eq. (32) or
(49), respectively. It has proven useful to first ensure a
convergence on large scales; i.e., small harmonic modes
k. This can be done repeating steps 6, 7, and 8 for all
k < kmax with growing kmax using the corresponding
projections Sk.

7. Update D̂
(s)

, the diffuse uncertainty variance, in case
of a Gibbs approach in analogy to step 5.

8. Optimize τ ?, the logarithmic power spectrum. – This is
done by solving Eq. (37) or (53). The trace term can
be computed analog to the diagonal; e.g., by probing.
Given this, the equation can be solved efficiently by a
Newton-Raphson method.

9. Repeat the steps 4 to 8 until convergence. – This scheme
will take several cycles until the algorithm reaches the
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of the diffuse reconstruction. The top panels show the denoised and deconvolved diffuse contribution 〈ρ(s)〉/ρ0
reconstructed using a different approach each, namely (d) MAP-δ, (e) MAP-G, and (f) Gibbs. The bottom panels (d) to (f) show
the difference between the originally simulated signal and the respective reconstruction.

desired convergence level. Therefore, it is not required
to achieve a convergence to the final accuracy level in all
subsets in all cycles. It is advisable to start with weak
convergence criteria in the first loop and increase them
gradually.

A few remarks are in order.
The phase space of possible signal field configurations

is tremendously huge. It is therefore impossible to judge
if the algorithm has converged to the global or some local
minima, but this does not matter if both yield reasonable
results that do not differ substantially.

In general, the converged solution is also subject to the
choice of starting values. Solving a non-convex, non-linear
inference problem without proper initialization can easily
lead to nonsensical results, such as fitting (all) diffuse fea-
tures by point sources. Therefore, the D3PO algorithm es-
sentially creates its own starting values executing the ini-
tial steps 1 to 3. The primitive starting values are thereby
processed to rough estimates that cover coarsely resolved
diffuse and prominent point-like features. These estimates
serve then as actual starting values for the optimization
cycle.

Because of the iterative optimization scheme starting
with the diffuse component in step 2, the algorithm might

be prone to explaining some point-like features by diffuse
sources. Starting with the point-like component instead
would give rise to the opposite bias. To avoid such biases, it
is advisable to restart the algorithm partially. To be more
precise, we propose to discard the current reconstruction
of m(u) after finishing step 8 for the first time, then start
the second iteration again with step 3, and to discard the
current m(s) before step 6.

The above scheme exploits a few numerical techniques,
such as probing or Levenberg damping, that are described
in great detail in the given references. The code of our im-
plementation of the D3PO algorithm will be made public
in the future under http://www.mpa-garching.mpg.de/
ift/d3po/.

4. Numerical application

Exceeding the simple 1D scenario illustrated in Fig. 1, the
D3PO algorithm is now applied to a realistic, but simu-
lated, data set. The data set represents a high energy ob-
servation with a field of view of 32×32 arcmin2 and a reso-
lution of 0.1 arcmin; i.e., the photon count image comprises
102 400 pixels. The instrument response includes the convo-
lution with a Gaussian-like PSF with a FWHM of roughly
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(a) (b) (c)

(d)= (a)− (b) (e) = (a)− (c)

(f) = |(e)| / (c) (g) (h)

Fig. 5. Illustration of the reconstruction of the diffuse signal field s = logρ(s) and its uncertainty. The top panels show diffuse
signal fields. Panel (a) shows the original simulation s, panel (b) the reconstruction m(s)

mode using a MAP approach, and panel (c)
the reconstructionm(s)

mean using a Gibbs approach. The panels (d) and (e) show the differences between original and reconstruction.
Panel (f) shows the relative difference. The panels (g) and (h) show the relative uncertainty of the above reconstructions.

0.2 arcmin, and an uneven survey mask attributable to the
inhomogeneous exposure of the virtual instrument. The
data image and those characteristics are shown in Fig. 3.

In addition, the top panels of Fig. 3 show the reproduced
signal responses of the reconstructed (total) photon flux.

The reconstructions used the same model parameters, α =
1, q = 10−12, σ = 10, β = 3

2 , and η = 10−4 in a MAP-δ,
MAP-G and a Gibbs approach, respectively. They all show a
very good agreement with the actual data, and differences
are barely visible by eye. We note that only the quality
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Fig. 6. Illustration of the reconstruction of the logarithmic power spectrum τ . Both panels show the default power spectrum
(black dashed line), and the simulated realization (black dotted line), as well as the reconstructed power spectra using a MAP
(orange solid line), plus second order corrections (orange dashed line), and a Gibbs approach (blue solid line). Panel (a) shows the
reconstruction for a chosen σ parameter of 10, panel (b) for a σ of 1000.

of denoising is visible, since the signal response shows the
convolved and superimposed signal fields.

The diffuse contribution to the deconvolved photon flux
is shown Fig. 4 for all three estimators, cf. Eqs. (54) to (56).
There, all point-like contributions as well as noise and in-
strumental effects have been removed presenting a denoised,
deconvolved and decomposed reconstruction result for the
diffuse photon flux. Figure 4 also shows the absolute dif-
ference to the original flux. Although the differences in the
MAP estimators are insignificant, the Gibbs solution seems
to be slightly better.

In order to have a quantitative statement about the
goodness of the reconstruction, we define a relative residual
error ε(s) for the diffuse contribution as follows,

ε(s) =
∣∣∣ρ(s) −

〈
ρ(s)

〉∣∣∣
2

∣∣∣ρ(s)
∣∣∣−1

2
, (59)

where | · |2 is the Euclidean L2-norm. For the point-like con-
tribution, however, we have to consider an error in bright-
ness and position. For this purpose we define,

ε(u) =

∫ N

1

dn
∣∣∣Rn

PSFρ
(u) −Rn

PSF

〈
ρ(u)

〉∣∣∣
2

∣∣∣Rn
PSFρ

(u)
∣∣∣−1

2
,

(60)

where RPSF is a (normalized) convolution operator, such
that RN

PSF becomes the identity for large N . These errors
are listed in Table 1. When comparing the MAP-δ and
MAP-G approach, the incorporation of uncertainty correc-
tions seems to improve the results slightly. The full regular-
ization treatment within the Gibbs approach outperforms
MAP solutions in terms of the chosen error measure ε( · ).
For a discussion of how such measures can change the view
on certain Bayesian estimators, we refer to the work by
Burger & Lucka (2014).

Table 1. Overview of the relative residual errors in the photon
flux reconstructions for the respective approaches, all using the
same model parameters, cf. text.

MAP-δ MAP-G Gibbs
ε(s) = 4.442% ε(s) = 4.441% ε(s) = 2.078%
ε(u) = 1.540% ε(u) = 1.540% ε(u) = 1.089%

Figure 5 illustrates the reconstruction of the diffuse sig-
nal field, now in terms of logarithmic flux. The original and
the reconstructions agree well, and the strongest deviations
are found in the areas with low amplitudes. With regard to
the exponential ansatz in Eq. (4), it is not surprising that
the inference on the signal fields is more sensitive to higher
values than to lower ones. For example, a small change in
the diffuse signal field, s→ (1±ε)s, translates into a factor
in the photon flux, ρ(s) → ρ(s)e±εs, that scales exponen-
tially with the amplitude of the diffuse signal field. The
Gibbs solution shows less deviation from the original signal
than the MAP solution. Since the latter lacks the regular-
ization by the uncertainty covariance it exhibits a stronger
tendency to overfitting compared to the former. This in-
cludes overestimates in noisy regions with low flux intensi-
ties, as well as underestimates at locations where point-like
contributions dominate the total flux.

The reconstruction of the power spectrum, as shown in
Fig. 6, gives further indications of the reconstruction quality
of the diffuse component. The simulation used a default
power spectrum of

exp(τk) = 42 (k + 1)−7. (61)

This power spectrum was on purpose chosen to deviate from
a strict power law supposed by the smoothness prior.

From Fig. 6 it is apparent that the reconstructed power
spectra track the original well up to a harmonic mode k of
roughly 0.4 arcmin−1. Beyond that point, the reconstructed
power spectra fall steeply until they hit a lower boundary
set by the model parameter q = 10−12. This drop-off point
at 0.4 arcmin−1 corresponds to a physical wavelength of
roughly 2.5 arcmin, and thus (half-phase) fluctuations on a
spatial distances below 1.25 arcmin. The Gaussian-like PSF
of the virtual observatory has a finite support of 1.1 arcmin.
The lack of reconstructed power indicates that the algo-
rithm assigns features on spatial scales smaller than the
PSF support preferably to the point-like component. This
behavior is reasonable because solely the point-like signal
can cause PSF-like shaped imprints in the data image. How-
ever, there is no strict threshold in the distinction between
the components on the mere basis of their spatial extend.
We rather observe a continuous transition from assigning
flux to the diffuse component to assigning it to the point-
like component while reaching smaller spatial scales because
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Fig. 7. Illustration of the reconstruction of the point-like signal field u = logρ(u) and its uncertainty. The top panels show
the location (markers) and intensity (gray scale) of the point-like photon fluxes, underlaid is the respective diffuse contribution
(contours) to guide the eye, cf. Fig 4. Panel (a) shows the original simulation, panel (b) the reconstruction using a MAP approach,
and panel (c) the reconstruction using a Gibbs approach. The bottom panels (d) and (e) show the match between original and
reconstruction in absolute and relative fluxes, the 2σ shot noise interval (gray contour), as well as some reconstruction uncertainty
estimate (error bars).

strict boundaries are blurred out under the consideration of
noise effects.

The differences between the reconstruction using a MAP
and a Gibbs approach are subtle. The difference in the re-
construction formulas given by Eqs. (37) and (53) is an
additive trace term involving D(s), which is positive defi-
nite. Therefore, a reconstructed power spectrum regularized
by uncertainty corrections is never below the one with out
given the samem(s). However, the reconstruction of the sig-
nal field follows different filter formulas, respectively. Since
the Gibbs approach considers the uncertainty covariance
D(s) properly in each cycle, it can present a more conser-
vative solution. The drop-off point is apparently at higher
k for the MAP approach, leading to higher power on scales
between roughly 0.3 and 0.7 arcmin−1. In turn, the MAP
solution tends to overfit by absorbing some noise power into
m(s) as discussed in Sec. 3. Thus, the higher MAP power
spectrum in Fig. 6 seems to be caused by a higher level of
noise remnants in the signal estimate.

The influence of the choice of the model parameter σ
is also shown in Fig. 6. Neither a smoothness prior with
σ = 10, nor a weak one with σ = 1000 influences the recon-
struction of the power spectrum substantially in this case.12
The latter choice, however, exhibits some more fluctuations
in order to better track the concrete realization.

The results for the reconstruction of the point-like com-
ponent are illustrated in Fig. 7. Overall, the reconstructed
point-like signal field and the corresponding photon flux are
in good agreement with the original ones. The point-sources
have been located with an accuracy of ±0.1 arcmin, which is
less than the FWHM of the PSF. The localization tends to
be more precise for higher flux values because of the higher
signal-to-noise ratio. The reconstructed intensities match
the simulated ones well, although the MAP solution shows
a spread that exceeds the expected shot noise uncertainty
interval. This is again an indication of the overfitting known

12 For a discussion of further log-normal reconstruction scenarios
please refer to the work by Oppermann et al. (2012).
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for MAP solutions. Moreover, neither reconstruction shows
a bias towards higher or lower fluxes.

The uncertainty estimates for the point-like photon flux
ρ(u) obtained from D(u) according to Eqs. (57) and (58)
are, in general, consistent with the deviations from the orig-
inal and the shot noise uncertainty, cf. Fig. 7. They show
a reasonable scaling being higher for lower fluxes and vice
versa. However, some uncertainties seem to be underesti-
mated. There are different reasons for this.

On the one hand, the Hessian approximation for D(u)

in Eq. (36) or (51) is in individual cases in so far poor
as that the curvature of the considered potential does not
describe the uncertainty of the point-like component ade-
quately. The data admittedly constrains the flux intensity
of a point source sufficiently, especially if it is a bright one.
However, the rather narrow dip in the manifold landscape
of the considered potential can be asymmetric, and thus
not always well described by the quadratic approximation
of Eq. (36) or (51), respectively.

On the other hand, the approximation leading to van-
ishing cross-correlation D(su), takes away the possibility of
communicating uncertainties between diffuse and point-like
components. However, omitting the used simplification or
incorporating higher order corrections would render the al-
gorithm too computationally expensive. The fact that the
Gibbs solution, which takes D(u) into account, shows im-
provements backs up this argument.

The reconstructions shown in Fig. 5 and 7 used the
model parameters σ = 10, β = 3

2 , and η = 10−4. In order
to reflect the influence of the choice of σ, β, and η, Table 2
summarizes the results from several reconstructions carried
out with varying model parameters. Accordingly, the best
parameters seem to be σ = 10, β = 5

4 , and η = 10−4,
although we caution that the total error is difficile to deter-
mine as the residual errors, ε(s) and ε(u), are defined differ-
ently. Although the errors vary significantly, 2–15% for ε(s),
we like to stress that the model parameters were changed
drastically, partly even by orders of magnitude. The impact
of the prior clearly exists, but is moderate. We note that
the case of σ → ∞ corresponds to neglecting the smooth-
ness prior completely. The β = 1 case that corresponds to
a logarithmically flat prior on u showed a tendency to fit
more noise features by point-like contributions.

In summary, the D3PO algorithm is capable of denois-
ing, deconvolving and decomposing photon observations by
reconstructing the diffuse and point-like signal field, and the
logarithmic power spectrum of the former. The reconstruc-
tion using MAP and Gibbs approaches perform flawlessly,
except for a little underestimation of the uncertainty of the
point-like component. The MAP approach shows signs of
overfitting, but those are not overwhelming. Considering
the simplicity of the MAP approach that goes along with
a numerically faster performance, this shortcoming seems
acceptable.

Because of the iterative scheme of the algorithm, a com-
bination of the MAP approach for the signal fields and a
Gibbs approach for the power spectrum is possible.

5. Conclusions & summary

The D3PO algorithm for the denoising, deconvolving and
decomposing photon observations has been derived. It al-
lows for the simultaneous but individual reconstruction of

the diffuse and point-like photon fluxes, as well as the har-
monic power spectrum of the diffuse component, from a
single data image that is exposed to Poissonian shot noise
and effects of the instrument response functions. Moreover,
the D3PO algorithm can provide a posteriori uncertainty
information on the reconstructed signal fields. With these
capabilities, D3PO surpasses previous approaches that ad-
dress only subsets of these complications.

The theoretical foundation is a hierarchical Bayesian pa-
rameter model embedded in the framework of IFT. The
model comprises a priori assumptions for the signal fields
that account for the different statistics and correlations of
the morphologically different components. The diffuse pho-
ton flux is assumed to obey multivariate log-normal statis-
tics, where the covariance is described by a power spectrum.
The power spectrum is a priori unknown and reconstructed
from the data along with the signal. Therefore, hyperpriors
on the (logarithmic) power spectra have been introduced,
including a spectral smoothness prior (Enßlin & Frommert
2011; Oppermann et al. 2012). The point-like photon flux,
in contrast, is assumed to factorize spatially in indepen-
dent inverse-Gamma distributions implying a (regularized)
power-law behavior of the amplitudes of the flux.

An adequate description of the noise properties in terms
of a likelihood, here a Poisson distribution, and the incor-
poration of all instrumental effects into the response oper-
ator renders the denoising and deconvolution task possible.
The strength of the proposed approach is the performance
of the additional decomposition task, which especially ex-
ploits the a priori description of diffuse and point-like. The
model comes down to five scalar parameters, for which all
a priori defaults can be motivated, and of which none is
driving the inference predominantly.

We discussed maximum a posteriori (MAP) and Gibbs
free energy approaches to solve the inference problem. The
derived solutions provide optimal estimators that, in the
considered examples, yielded equivalently excellent results.
The Gibbs solution slightly outperforms MAP solutions (in
terms of the considered L2-residuals) thanks to the full reg-
ularization treatment, however, for the price of a compu-
tationally more expensive optimization. Which approach is
to be preferred in general might depend on the concrete
problem at hand and the trade-off between reconstruction
precision against computational effort.

The performance of the D3PO algorithm has been
demonstrated in realistic simulations carried out in 1D
and 2D. The implementation relies on the NIFTy package
(Selig et al. 2013), which allows for the application regard-
less of the underlying position space.

In the 2D application example, a high energy observa-
tion of a 32 × 32 arcmin2 patch of a simulated sky with a
0.1 arcmin resolution has been analyzed. The D3PO algo-
rithm successfully denoised, deconvolved and decomposed
the data image. The analysis yielded a detailed reconstruc-
tion of the diffuse photon flux and its logarithmic power
spectrum, the precise localization of the point sources and
accurate determination of their flux intensities, as well as
a posteriori estimates of the reconstructed fields.

The D3PO algorithm should be applicable to a wide
range of inference problems appearing in astronomical
imaging and related fields. Concrete applications in high
energy astrophysics, for example, the analysis of data from
the Chandra X-ray observatory or the Fermi γ-ray space
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telescope, are currently considered by the authors. In this
regard, the public release of the D3PO code is planned.
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Appendix A: Point source stacking

In Sec. 2.3.3, a prior for the point-like signal field has been
derived under the assumption that the photon flux of point
sources is independent between different pixels and identi-
cally inverse-Gamma distributed,

ρ(u)
x x I

(
ρ(u)
x , β =

3

2
, ρ0η

)
∀x, (A.1)

with the shape and scale parameters, β and η. It can be
shown that, for β = 3

2 , the sum of N such variables still
obeys an inverse-Gamma distribution,

ρ
(u)
N =

N∑
x

ρ(u)
x (A.2)

ρ
(u)
N x I

(
ρ

(u)
N , β =

3

2
, N2ρ0η

)
. (A.3)

For a proof see (Giron 2001).
In the case of β = 3

2 , the power-law behavior of the prior
becomes independent of the discretization of the continuous
position space. This means that the slope of the distribu-
tion of ρ(u)

x remains unchanged notwithstanding that we
refine or coarsen the resolution of the reconstruction. How-
ever, the scale parameter η needs to be adapted for each
resolution; i.e., η → N2η if N pixels are merged.

Appendix B: Covariance & curvature.

The covariance D of a Gaussian G(s−m,D) describes the
uncertainty associated with the mean m of the distribu-
tion. It can be computed by second moments or cumulants
according to Eq. (3), or in this Gaussian case as the inverse
Hessian of the corresponding information Hamiltonian,
∂2H

∂s∂s†

∣∣∣∣
s=m

=
∂2

∂s∂s†

(
1

2
(s−m)†D−1(s−m)

) ∣∣∣∣
s=m

= D−1. (B.1)
In Sec. 3, uncertainty covariances for the diffuse signal field
s and the point-like signal field u have been derived that
are here given in closed form.

The MAP uncertainty covariances introduced in Sec. 3.1
are approximated by inverse Hessians. According to
Eq. (36), they read

D(s)
xy

−1
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1− di
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δxy (B.2)
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with

li =

∫
dx Rix

(
em
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x + em

(u)
x

)
. (B.4)

The corresponding covariances derived in the Gibbs ap-
proach according to Eq. (51), yield
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with

li =

∫
dx Rix

(
em

(s)
x +

1
2D

(s)
xx + em

(u)
x +

1
2D

(u)
xx

)
. (B.7)

They are identical up to the + 1
2Dxx terms in the expo-

nents. On the one hand, this reinforces the approximations
done in Sec. 3.2. On the other hand, this shows that higher
order correction terms might alter the uncertainty covari-
ances further, cf. Eq. (43). The concrete impact of these
correction terms is difficult to judge, since they introduce
terms involving Dxy that couple all elements of D in an
implicit manner.

We note that the inverse Hessian describes the curvature
of the potential, its interpretation as uncertainty is, strictly
speaking, only valid for quadratic potentials. However, in
most cases it is a sufficient approximation.

The Gibbs approach provides an alternative by equat-
ing the first derivative of the Gibbs free energy with respect
to the covariance with zero. Following Eq. (52), the covari-
ances read
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−1, (B.9)

and
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xx (B.10)

+ η e−m
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1
2D

(u)
xx

}
δxy. (B.11)

Compared to the above solutions, there is one term miss-
ing indicating that they already lack first order corrections.
For this reasons, the solutions obtained from the inverse
Hessians are used in the D3PO algorithm.

Appendix C: Posterior approximation

Appendix C.1: Information theoretical measure

If the full posterior P (z|d) of an inference problem is so
complex that an analytic handling is infeasible, an approx-
imate posterior Q might be used instead. The fitness of
such an approximation can be quantified by an asymmet-
ric measure for which different terminologies appear in the
literature.

First, the Kullback-Leibler divergence,

DKL(Q,P ) =

∫
Dz Q(z|d) log

Q(z|d)

P (z|d)
(C.1)

=

〈
log

Q(z|d)

P (z|d)

〉
Q

, (C.2)

defines mathematically an information theoretical distance,
or divergence, which is minimal if a maximal cross informa-
tion between P and Q exists (Kullback & Leibler 1951).

Second, the information entropy,

SE(Q,P ) = −
∫
Dz P (z|d) log

P (z|d)

Q(z|d)
(C.3)

=

〈
− log

P (z|d)

Q(z|d)

〉
P

(C.4)

= −DKL(P,Q),

is derived under the maximum entropy principle (Jaynes
1957) from fundamental axioms demanding locality, coordi-
nate invariance and system independence Caticha (see e.g.,
2008, 2011).

Third, the (approximate) Gibbs free energy (Enßlin &
Weig 2010),

G =
〈
H(z|d)

〉
Q
− SB(Q) (C.5)

=
〈
− logP (z|d)

〉
Q
−
〈
− logQ(z|d)

〉
Q

(C.6)

= DKL(Q,P ),

describes the difference between the internal energy
〈H(z|d)〉Q and the Boltzmann-Shannon entropy SB(Q) =

SE(1, Q). The derivation of the Gibbs free energy is based
on the principles of thermodynamics13.

The Kullback-Leibler divergence, information entropy,
and the Gibbs free energy are equivalent measures that al-
low one to assess the approximation Q ≈ P . Alternatively,
a parametrized proposal for Q can be pinned down by ex-
tremizing the measure of choice with respect to the param-
eters.

Appendix C.2: Calculus of variations

The information theoretical measure can be interpreted as
an action to which the principle of least action applies.
This concept is the basis for variational Bayesian methods
(Jordan et al. 1999; Wingate & Weber 2013), which en-
able among others the derivation of approximate posterior
distributions.

We suppose that z is a set of multiple signal fields, z =
{z(i)}i∈N, d a given data set, and P (z|d) the posterior of
interest. In practice, such a problem is often addressed by
a mean field approximation that factorizes the variational
posterior Q,

P (z|d) ≈ Q =
∏
i

Qi(z
(i)|µ,d). (C.7)

Here, the mean field µ, which mimics the effect of all
z(i 6=j) onto z(j), has been introduced. The approximation
in Eq. (C.7) shifts any possible entanglement between the
z(i) within P into the dependence of z(i) on µ within Qi.
Hence, the mean field µ is well determined by the infer-
ence problem at hand, as demonstrated in the subsequent
Sect. C.3. We note that µ represents effective rather than
additional degrees of freedom.

Following the principle of least action, any variation of
the Gibbs free energy must vanish. We consider a varia-
tion δj = δ/δQj(z

(j)|µ,d) with respect to one approximate
posterior Qj(z(j)|µ,d). It holds,

δQi(z̃
(i)|µ,d)

δQj(z(j)|µ,d)
= δij δ(z

(i) − z̃(j)). (C.8)

Computing the variation of the Gibbs free energy yields

13 In Eq. (C.5), a unit temperature is implied, see discussion by
Enßlin & Weig (2010); Iatsenko et al. (2012); Enßlin & Weig
(2012)
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δjG = 0 =
δ

δQj(z(j)|µ,d)

{〈
H(z|d)

〉
Q
−
〈
− logQ

〉
Q

}
(C.9)

=
δ
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{〈
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〉
Q

+
∑
i

〈
logQi(z̃
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〉
Qi

}
(C.10)

=
δ

δQj(z(j)|µ,d)

∫
Dz̃(j) Qj(z̃
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{〈
H(z|d)

〉∏
Qi6=j

+ logQj(z̃
(j)|µ,d)

}
+

δ

δQj(z(j)|µ,d)

∑
i6=j

. . .︸ ︷︷ ︸
=0

=

∫
Dz̃(j) δ(z(i) − z̃(j))

{〈
H(z|d)

〉∏
Qi6=j

+ logQj(z̃
(j)|µ,d) + 1

}
=
〈
H(z|d)

∣∣∣
z(j)

〉
∏
Qi6=j

+ logQj(z
(j)|µ,d) + const. (C.11)

This defines a solution for the approximate posteriorQj ,
where the constant term in Eq. (C.11) ensures the correct
normalization14 of Qj ,

Qj(z
(j)|µ,d) ∝ exp

(
−
〈
H(z|d)

∣∣∣
z(j)

〉
∏
Qi6=j

)
. (C.12)

Although the parts z(i 6=j) are integrated out, Eq. (C.12) is
no marginalization since the integration is performed on the
level of the (negative) logarithm of a probability distribu-
tion. The success of the mean field approach might be that
this integration is often more well-behaved in comparison
to the corresponding marginalization. However, the result-
ing equations for the Qi depend on each other, and thus
need to be solved self-consistently.

A maximum a posteriori solution for z(j) can then be
found by minimizing an effective Hamiltonian,

argmax
z(j)

P (z|d) = argmin
z(j)

H(z|d) (C.13)

≈ argmin
z(j)

〈
H(z|d)

∣∣∣
z(j)

〉
∏
Qi6=j

. (C.14)

Since the posterior is approximated by a product, the
Hamiltonian is approximated by a sum, and each summand
depends on solely one variable in the partition of the latent
variable z.

Appendix C.3: Example

In this section, the variational method is demonstrated with
an exemplary posterior of the following form,

P (s, τ |d) =
P (d|s)
P (d)

P (s|τ ) P (τ ) (C.15)

=
P (d|s)
P (d)

G(s,S) Pun(τ |α, q) Psm(τ |σ), (C.16)

where P (d|s) stands for an arbitrary likelihood describing
how likely the data d can be measured from a signal s,
and S =

∑
k eτkSk for a parametrization of the signal co-

variance. This posterior is equivalent to the one derived in
Sec. 2 in order to find a solution for the logarithmic power
14 The normalization could be included by usage of La-
grange multipliers; i.e., by adding a term

∑
i λi
(
1 −∫

Dz(i) Qi(z
(i)|µ,d)

)
to the Gibbs free energy in Eq. (C.9).

(a)

model

τ s

d

(b)

model

µ

τ s

d

Fig. C.1. Graphical model for the variational method applied
to the example posterior in Eq. (C.15). Panel (a) shows the
graphical model without, and panel (b) with the mean field µ.

spectrum τ . Here, any explicit dependence on the point-like
signal field u is veiled in favor of clarity.

The corresponding Hamiltonian reads

H(s, τ |d) = − logP (s, τ |d) (C.17)

= H0 +
1

2

∑
k

(
%kτk + tr

[
ss†S−1

k

]
e−τk

)
(C.18)

+ (α− 1)†τ + q†e−τ +
1

2
τ †Tτ ,

where %k = tr
[
SkSk

−1
]
and all terms constant in τ , in-

cluding the likelihood P (d|s), have been absorbed into H0.
For an arbitrary likelihood it might not be possible to

marginalize the posterior over s analytically. However, an
integration of the Hamiltonian over smight be feasible since
the only relevant term is quadratic in s. As, on the one
hand, the prior P (s|τ ) is Gaussian and, on the other hand,
a posterior meanm and covariance D for the signal field s
suffice, cf. Eq. (2) and (3), we assume a Gaussian approxi-
mation for Qs; i.e., Qs = G(s−m,D).

We now introduce a mean field approximation, denoted
by µ, by changing the causal structure as depicted in
Fig. C.1. With the consequential approximation of the pos-
terior,

P (s, τ |d) ≈ G(s−m,D) Qτ (τ |µ,d), (C.19)
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we can calculate the effective Hamiltonian for τ as〈
H(s, τ |d)

∣∣∣
τ

〉
Qs

= H0 + γ†τ +
1

2
τ †Tτ + q†e−τ (C.20)

+
1

2

∑
k

tr
[〈
ss†
〉
Qs
S−1
k

]
e−τk

= H0 + γ†τ +
1

2
τ †Tτ + q†e−τ (C.21)

+
1

2

∑
k

tr
[ (
mm† +D

)
S−1
k

]
e−τk ,

where γ = (α− 1) + 1
2%.

The nature of the mean field µ can be derived from the
coupling term in Eq. (C.18) that ensures an information
flow between s and τ ,

µ =

( 〈
tr
[
ss†S−1

k

]〉
Qs〈∑

k e−τkS−1
k

〉
Qτ

)
=

(
tr
[(
mm† +D

)
S−1
k

]〈
S−1

〉
Qτ

)
(C.22)

Hence, the mean field effect on τk is given by the above
trace, and the mean field effect on s is described by〈
S−1

〉
Qτ

.
Extremizing Eq. (C.21) yields

eτ =
q + 1

2

(
tr
[(
mm† +D

)
S−1
k

])
k

γ + Tτ
. (C.23)

This formula is in agreement with the critical filter formula
(Enßlin & Frommert 2011; Oppermann et al. 2012). In case
a Gaussian likelihood and no smoothness prior is assumed,
it is the exact maximum of the true posterior with respect
to the (logarithmic) power spectrum.
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Table 2. Overview of the relative residual error in the photon flux reconstructions for a MAP-δ approach with varying model
parameters σ, β, and η. The parameters α and q were fixed. The best and worst residuals are printed in bold face.

α = 1 q = 10−12 σ = 1 σ = 10 σ = 100 σ = 1000 σ →∞

β = 1 η = 10−6 ε(s) = 0.06710 ε(s) = 0.05406 ε(s) = 0.05323 ε(s) = 0.05383 ε(s) = 0.05359
ε(u) = 0.02000 ε(u) = 0.01941 ε(u) = 0.01602 ε(u) = 0.01946 ε(u) = 0.01898

β = 5
4

η = 10−6 ε(s) = 0.02874 ε(s) = 0.01929 ε(s) = 0.01974 ε(s) = 0.02096 ε(s) = 0.01991
ε(u) = 0.01207 ε(u) = 0.01102 ε(u) = 0.01090 ε(u) = 0.01123 ε(u) = 0.01104

β = 3
2

η = 10−6 ε(s) = 0.05890 ε(s) = 0.02237 ε(s) = 0.02318 ε(s) = 0.02238 ε(s) = 0.02344
ε(u) = 0.02741 ε(u) = 0.01343 ε(u) = 0.01346 ε(u) = 0.01342 ε(u) = 0.01351

β = 7
4

η = 10−6 ε(s) = 0.10864 ε(s) = 0.04304 ε(s) = 0.03234 ε(s) = 0.03248 ε(s) = 0.03263
ε(u) = 0.04840 ε(u) = 0.02767 ε(u) = 0.02142 ε(u) = 0.02143 ε(u) = 0.02167

β = 2 η = 10−6 ε(s) = 0.11870 ε(s) = 0.04614 ε(s) = 0.04527 ε(s) = 0.04522 ε(s) = 0.04500
ε(u) = 0.05360 ε(u) = 0.02926 ε(u) = 0.02924 ε(u) = 0.02926 ε(u) = 0.02915

β = 1 η = 10−4 ε(s) = 0.06660 ε(s) = 0.05474 ε(s) = 0.05377 ε(s) = 0.05474 ε(s) = 0.05423
ε(u) = 0.02157 ε(u) = 0.01903 ε(u) = 0.01657 ε(u) = 0.01986 ε(u) = 0.02055

β = 5
4

η = 10−4 ε(s) = 0.02874 ε(s) = 0.01929 ε(s) = 0.01974 ε(s) = 0.02096 ε(s) = 0.01991
ε(u) = 0.01207 ε(u) = 0.01100 ε(u) = 0.01103 ε(u) = 0.01123 ε(u) = 0.01102

β = 3
2

η = 10−4 ε(s) = 0.05890 ε(s) = 0.02237 ε(s) = 0.02318 ε(s) = 0.02238 ε(s) = 0.02344
ε(u) = 0.02743 ε(u) = 0.01343 ε(u) = 0.01346 ε(u) = 0.01340 ε(u) = 0.01352

β = 7
4

η = 10−4 ε(s) = 0.10864 ε(s) = 0.04304 ε(s) = 0.03234 ε(s) = 0.03248 ε(s) = 0.03263
ε(u) = 0.04840 ε(u) = 0.02766 ε(u) = 0.02145 ε(u) = 0.02142 ε(u) = 0.02166

β = 2 η = 10−4 ε(s) = 0.11870 ε(s) = 0.04614 ε(s) = 0.04527 ε(s) = 0.04522 ε(s) = 0.04500
ε(u) = 0.05358 ε(u) = 0.02926 ε(u) = 0.02926 ε(u) = 0.02927 ε(u) = 0.02916

β = 1 η = 10−2 ε(s) = 0.07271 ε(s) = 0.06209 ε(s) = 0.06192 ε(s) = 0.06291 ε(s) = 0.06265
ε(u) = 0.02252 ε(u) = 0.02047 ε(u) = 0.02109 ε(u) = 0.01764 ε(u) = 0.02068

β = 5
4

η = 10−2 ε(s) = 0.02335 ε(s) = 0.01934 ε(s) = 0.02042 ε(s) = 0.01999 ε(s) = 0.01930
ε(u) = 0.01139 ε(u) = 0.01112 ε(u) = 0.01097 ε(u) = 0.01124 ε(u) = 0.01102

β = 3
2

η = 10−2 ε(s) = 0.05999 ε(s) = 0.02227 ε(s) = 0.02347 ε(s) = 0.02266 ε(s) = 0.02274
ε(u) = 0.02745 ε(u) = 0.01341 ε(u) = 0.01356 ε(u) = 0.01332 ε(u) = 0.01351

β = 7
4

η = 10−2 ε(s) = 0.10715 ε(s) = 0.04304 ε(s) = 0.03254 ε(s) = 0.03264 ε(s) = 0.03258
ε(u) = 0.04833 ε(u) = 0.02766 ε(u) = 0.02140 ε(u) = 0.02144 ε(u) = 0.02163

β = 2 η = 10−2 ε(s) = 0.12496 ε(s) = 0.04614 ε(s) = 0.04497 ε(s) = 0.04528 ε(s) = 0.04500
ε(u) = 0.05361 ε(u) = 0.02927 ε(u) = 0.02915 ε(u) = 0.02914 ε(u) = 0.02915

β = 1 η = 1
ε(s) = 0.15328 ε(s) = 0.14544 ε(s) = 0.14138 ε(s) = 0.14181 ε(s) = 0.14185
ε(u) = 0.03250 ε(u) = 0.03291 ε(u) = 0.02905 ε(u) = 0.03087 ε(u) = 0.02876

β = 5
4

η = 1
ε(s) = 0.15473 ε(s) = 0.14406 ε(s) = 0.14357 ε(s) = 0.14465 ε(s) = 0.13964
ε(u) = 0.03217 ε(u) = 0.03166 ε(u) = 0.03089 ε(u) = 0.03101 ε(u) = 0.03160

β = 3
2

η = 1
ε(s) = 0.15360 ε(s) = 0.14216 ε(s) = 0.14248 ε(s) = 0.14208 ε(s) = 0.14233
ε(u) = 0.03262 ε(u) = 0.03063 ε(u) = 0.02534 ε(u) = 0.02872 ε(u) = 0.03095

β = 7
4

η = 1
ε(s) = 0.15206 ε(s) = 0.14156 ε(s) = 0.13772 ε(s) = 0.14160 ε(s) = 0.14390
ε(u) = 0.03262 ε(u) = 0.03065 ε(u) = 0.03174 ε(u) = 0.03141 ε(u) = 0.03178

β = 2 η = 1
ε(s) = 0.06421 ε(s) = 0.05479 ε(s) = 0.05365 ε(s) = 0.05499 ε(s) = 0.05429
ε(u) = 0.02043 ε(u) = 0.01966 ε(u) = 0.01676 ε(u) = 0.02070 ε(u) = 0.01996
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