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Zusammenfassung

Die Schwerpunkte dieser Dissertation liegen in der Entwicklung und Anwendung bildgeben-
der Verfahren im Bereich der Gammaastronomie und der medizinischen Röntgentomographie.
Die Analyse der vom Fermi Gamma-ray Space Telescope gesammelten Daten kann uns einiges
über den Ursprung und die Zusammensetzung der kosmischen Gammastrahlung lehren. Die
hierfür notwendigen numerischen Methoden nutzen Wahrscheinlichkeitslogik und sind viel-
seitig anwendbar.

Die Flussdichte der extraterrestrischen Gammastrahlung ist, abgesehen von Punktquellen
und Linienemission, eine kontinuierliche Funktion des Ortes und der Energie. Ausgehend von
dem fundamentalen Problem, ein solches Signalfeld aus verrauschten Daten herauszufiltern,
konstruieren wir einen Algorithmus zum “Entrauschen, Entfalten und Entwirren von Pho-
tonenbeobachtungen” (engl. Abk. D3PO). Eine gegebene Beobachtung zerlegt der D3PO-
Algorithmus simultan in Schätzer für den diffusen und punktförmigen Photonenfluss, und
liefert zudem Informationen über deren Unsicherheit. Dabei nutzt D3PO Vorwissen inner-
halb der zugrundeliegenden Bayes’schen Parameterhierarchie aus. Der D3PO-Algorithmus
basiert auf “Numerischer Informationsfeldtheorie” (engl. Abk. NIFTy), welche es ermöglicht
Berechnungen unabhängig von räumlichen Gittern und deren Auflösung durchzuführen.

Wir nutzen den D3PO-Algorithmus zur Analyse der 5,5-Jahres-Daten des Fermi Large
Area Telescope (LAT). Mit unserem schablonenfreien, nichtparametrischen Rekonstruktions-
verfahren enthüllen wir den diffusen Gammastrahlungsfluss auf Skalen der Giant Fermi Bub-
bles bis hinunter zu dem kleinskaligen Gammaglühen um Centaurus A. Am Himmel finden
sich morphologisch und spektral unterschiedliche Quellen. Anhand ihrer Morphologie können
wir diffuse Emission und punktförmige Quellen unterscheiden. Wir stellen einen vorläufigen
Punktquellenkatalog vor, der 2.522 Kandidaten zählt, von denen wir 1.269 mit bekannten
Quellen aus dem zweiten Fermi LAT Katalog assoziieren können. Eine phänomenologische
Analyse der diffusen Emission offenbart zwei morphologisch und spektral unterscheidbare
Komponenten. Zum Einen entdecken wir eine weiche Komponente, die Strukturen des in-
terstellaren Mediums folgt und vermutlich durch hadronische Wechselwirkungen induziert
wurde. Zum Anderen gibt es eine harte Komponente, die heiße Ausflüsse, wie die Fermi Bub-
bles, nachzeichnet. Wir zeigen weiterhin die erste Ganzhimmelskarte des spektralen Index
des anisotropen, diffusen Gammastrahlungsflusses.

Des Weiteren übertragen wir die für die Gammaastronomie entwickelten bildgebenden
Verfahren auf medizinische Röntgencomputertomographie (CT). Im Speziellen erforschen wir,
ob die mit Vorwissen ausgestattete Wahrscheinlichkeitslogik bessere Bilder für diagnostische
Zwecke zu liefern vermag. Solch eine Verbesserung könnte, auf lange Sicht, zu einer Vermin-
derung der Strahlendosis bei CT-Untersuchungen führen. Wir demonstrieren die Konkur-
renzfähigkeit unseres Verfahrens anhand der Rekonstruktion von anonymisierten CT-Daten.
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Summary

This thesis is focused on the development of imaging techniques for high energy photon obser-
vations and their applications in γ-ray astronomy and medical X-ray computed tomography.
By analyzing data from the Fermi Gamma-ray Space Telescope, we advance the knowledge
on the origin and composition of the celestial γ-ray sky. The numerical method required for
this purpose is derived using probabilistic reasoning and implemented in an abstract way so
that it can be used in a wide range of applications.

The astrophysical γ-ray flux density is, except for point sources and line emission, a con-
tinuous function of position and energy. Starting from the fundamental problem of inferring
such a continuous signal field from noisy measurement data, we construct an inference algo-
rithm capable of “Denoising, Deconvolving, and Decomposing Photon Observations” (D3PO)
in the language of information field theory. Given a single photon count image, the D3PO
algorithm simultaneously infers individual estimates for the diffuse and point-like photon
flux, and additionally provides valuable uncertainty information on the reconstruction. As a
probabilistic algorithm, D3PO exploits prior information throughout a hierarchical Bayesian
parameter model. The D3PO algorithm is based on a new software package called “Numerical
Information Field Theory” (NIFTy) that ensures the algorithm’s applicability irrespective of
the underlying spatial grid and its resolution. To demonstrate the fidelity of the algorithm,
we analyze simulated high energy photon count images in one- and two-dimensional settings.

We apply the D3PO inference algorithm to the 5.5 year all-sky data from the Fermi Large
Area Telescope (LAT). With our template-free, non-parametric reconstruction, we uncover
the morphology of the diffuse γ-ray flux up to a few hundred GeV revealing features that
scale from the Giant Fermi Bubbles to the γ-ray glow around Centaurus A. The γ-ray sky is
composed of several morphologically and spectrally distinct sources. The difference in mor-
phology allows us to distinguish diffuse γ-ray emission and contributions from point-sources.
We present a preliminary point source catalog that lists 2,522 candidates of which 1,269 can
be associated with known sources from the second Fermi LAT source catalog. A phenomeno-
logical analysis of the diffuse emission reveals two spectrally and morphologically distinct
components. Firstly, we find a soft component that traces the cold and dense interstellar
medium and is presumably induced by hadronic interactions. Secondly, there is a hard com-
ponent that follows the hot and dilute gas, in particular in outflows such as the Fermi bubbles.
We also present the first all-sky spectral index map for the anisotropic diffuse γ-ray flux.

Furthermore, we transfer the high energy photon imaging techniques developed for γ-ray
astronomy to medical X-ray computed tomography (CT). In particular, we explore whether
probabilistic methods aided by prior knowledge can yield improved images for diagnosing.
Such an advance could, in the long term, reduce the radiation dose patients are exposed to
when undergoing CT screenings. We demonstrate the competitiveness of our probabilistic
techniques by reconstructing slices of anonymized CT data.
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Chapter 1

Introduction

In this thesis, high energy photon observations, in particular the astronomical γ-ray sky as
seen by the Large Area Telescope on board the Fermi satellite, are studied. The aim is to
learn about the origin, composition, and properties of cosmic γ-rays and related particle pop-
ulations. For this purpose, we investigate the fundamental challenge of gaining information
on continuous and point-like physical quantities of interest from noisy observational data.
Using probabilistic methods, we derive a versatile technique to address high energy photon
imaging in an astrophysical setting. As this technique is easily transferable to other areas of
application, we further demonstrate its suitability to medical imaging.

This chapter introduces the basic physics of high energy photons by reviewing relevant
processes related to the production of cosmic γ-rays. Afterwards, we explain the challenges
of high energy photon imaging and give an introduction to information theory. We conclude
this introductory chapter by outlining the remainder of this cumulative thesis.

1.1 High Energy Photon Imaging

In the standard model of particle physics, the photon is the gauge boson of the electromagnetic
force. This quantum of light has no mass, spin 1, and carries an energy Eν = hν, where h
is the Planck constant and ν the frequency of the associated electromagnetic wave. While
optical photons have energies around 2 eV, the high energy regime starts with X-rays of
energies above 100 eV with a seamless transition to γ-rays above 500,000 eV.

In terms of thermodynamic temperature, the cosmic γ-ray energies exceed 1011 K ex-
cluding thermal sources as their origin. Nevertheless, strong solar flares can release X-rays
and even soft γ-rays. About 90% of the observed γ-ray emission is of diffuse origin (Unsöld
& Baschek 2001). The main contribution in the soft regime below 108 eV is bremsstrahlung
emitted by cosmic ray (CR) electrons. Hard γ-rays are the result of hadronic interactions of
CR nuclei with the interstellar medium (ISM) or leptonic interactions, such as inverse Comp-
ton scattering of CR electrons with low energy photons (Unsöld & Baschek 2001; Longair
2011).

In this section, a discussion of the physical processes that release high energy photons is
followed by an overview of the experimental challenges of astrophysical and medical photon
imaging.
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1.1.1 Physical Processes

Pion Production and Decay

The majority of diffuse γ-ray emission from within the Milky Way comes from hadronic
interactions of CR nuclei with the interstellar gas content. The CR population at a fixed
energy, say ∼ 109 eV, consists of roughly 90% protons, 9% heavier nuclei, and 1% electrons.

CRs with energies up to 1021 eV have been observed. In fact, their spectrum has been
measured over an energy range of 108–1020 eV and exhibits a multiply broken power-law. We
can approximate the CR spectrum by individual power-laws with different spectral indices α,

N(E) dE ∝ E−α dE, (1.1)

where N(E)dE is the number flux of CRs with energies between E and E + dE. Up to
the so-called “knee” at ∼ 1014 eV the empirical spectral index is 2.7, above it the spectrum
steepens (α ≈ 3), and finally flattens again beyond the so-called “ankle” at ∼ 1018 eV (Unsöld
& Baschek 2001).

As the proton-proton scattering becomes inelastic for center of mass energies above
108 eV, the collision of relativistic CR protons with thermal gas targets can produce new
particles. Typical channels result in the production of neutral or charged π-mesons; e.g.,

p+ p→ p+ p+ π0. (1.2)

In a monoenergetic approximation, the production rate qπ0 of neutral pions with energy Eπ0

in such a proton-proton collision,

qπ0 =

∫
dEp Np(Ep) δ(Eπ0 − fEp)σppngasc, (1.3)

depends on number spectrum Np(Ep) ∝ E−αp of the CR protons, the total scattering cross-
section σpp, and the mean number density of the gas targets ngas. Further, c is the speed of
light and f the fraction of the CR protons’ kinetic energy transferred to the pion, which is
empirically found to be 0.17 (B. & Lightman 1985; Unsöld & Baschek 2001). Since the proton-
proton cross-section becomes constant above 1 GeV, the rate of pion production follows the
CR proton spectrum; i.e., qπ0 ∝ E−α

π0 .
In the primary decay channel of the neutral pion, π0 → 2γ∗, two γ-ray photons are

released, which, in the pion rest frame, are isotropically emitted with energies Eν∗ = 1
2mπ0c2,

where mπ0 is the mass of the neutral pion.
Since this chain of events is induced by CRs, we can derive the photon spectrum from

the CR spectrum. In the observer’s frame, the photons produced during the neutral pion’s
decay are beamed in the direction of motion of the pion. It can be shown that the resulting
spectrum of the γ-ray emission is flat, but has a finite support with a logarithmic mean of
1
2mπ0 . Taking this and the pion production into account, the spectrum of γ-rays produced
by CR protons exhibits a bump at 1

2mπ0 and falls off with a power-law,

qν∗ ∝ E−αν∗ . (1.4)

The subdominant Dalitz decay, π0 → γ + e− + e+, as well as the decay cascade of a charged
pion, generates secondary electrons (and neutrinos) that, still having relativistic velocities,
can induce further γ-ray emission.
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Inverse Compton Scattering

Inverse Compton (IC) scattering,

e− + γ → e− + γ∗, (1.5)

describes the collision of a relativistic electron with a low energy photon, whereby the former
transfers a substantial fraction of its energy to the latter. Typical photon target fields are
the cosmic microwave background or star light.

If a photon with Energy Eν collides with an electron with energy Ee, its energy increases
on average to

Eν∗ = Eν γ
2

(
1 +

1

3
β2

)
, (1.6)

where γ = 1/
√

1− β2 = Ee/(mec
2) is the Lorentz factor associated with the CR electron and

me its mass. In the relativistic limit, β → 1, we find Eν∗ ∝ EνE
2
e . In this way, a relativistic

electron can boost a photon into the high energy regime.
In order to obtain the production spectrum of the upscattered photons, we need to

integrate over the energies of the CR electrons Ee and the low energy photons Eν ,

qν∗ =

∫
dEν

∫
dEe Ne(Ee) δ(Eν∗ − Eνγ2)σ(Ee, Eν , Eν∗)nν(Eν) c, (1.7)

where Ne(Ep) ∝ E−αe is the number spectrum of the CR electrons, σ(Ee, Eν , Eν∗) the total
scattering cross-section, and nν(Eν) the number density of photons with energy Eν . For
simplicity, we assume the background photon field to have a uniform energy E0; i.e., nν(Eν) =
n0 δ(Eν−E0). In case E0 � mec

2, the IC scattering can be described by Thompson scattering
in the electron rest frame. Since the Thompson scattering cross-section is independent of the
photon’s energy, we can compute the production spectrum analytically in this approximation,

qν∗ ∝ E0

α−1
2 Eν∗

−α+1
2 . (1.8)

This approximation does not hold for CR electrons with ultrarelativistic momenta. Instead,
we would need to apply the Klein-Nishina cross-section, which introduces a high energy cut-off
in the photon spectrum. Nevertheless, our approximation suffices for estimating the spectral
index of the photon spectrum induced by CR electrons. Over an energy range of 10–1000 GeV,
experiments have shown that the CR electron (and positron) spectrum follows a power-law
with a spectral index α ≈ 3 (see e.g., Strong et al. 2011). As a result, the upscattered photon
spectrum would have a spectral index of α+1

2 = 2. This yields a distinctly harder spectrum
compared to the hadronic case discussed earlier, and thus offers an approach for distinguishing
γ-ray emission induced by hadronic or leptonic processes.

Bremsstrahlung and Electron-Positron Pairs

The electromagnetic radiation emitted by charged particles that are decelerated (or acceler-
ated) due to the presence of electromagnetic fields is termed bremsstrahlung. This includes
special cases such as synchrotron and cyclotron radiation.

The bremsstrahlung emitted by relativistic CR electrons in the Coulomb field of nuclei
within the ISM is the dominant contribution to the soft γ-ray emission. This is a form of
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free-free emission, where relativistic CR electrons lose a part of their kinetic energy. It can be
shown that the resulting photon spectrum, qν∗ ∝ E−αν∗ , has the same spectral index α ≈ 3 as
the CR electron spectrum. Therefore, bremsstrahlung becomes negligible in the hard γ-ray
regime, where hadronic processes and IC scattering dominate.

If the energy of the emitted photon is much larger than the electron mass, Eν∗ � mec
2,

a electron-positron pair can be created,

γ + γ∗ → e− + e+, (1.9)

which eventually annihilates into two or three photons.1 However, before this might happen,
the electron and the positron can yet again emit bremsstrahlung. This leads to an electro-
magnetic cascade that ends when the photon’s energy is too low for pair production or when
the particles propagate into more dilute regions of the ISM.

Line emission

The above mentioned annihilation of an electron-positron pair with antiparallel spins releases
two photons, which, in the center of mass rest frame, have energies equivalent to the electron
mass, Eν = mec

2. In the observer’s frame, we can therefore observe beamed line emission at
this energy.

In theory, the annihilation (or decay) of dark matter particles could also result in line-like
γ-ray emission corresponding to the mass of the dark matter particle. In practice, however,
such a “smoking gun” signal for dark matter annihilation has not (yet) been confirmed.

Another source of γ-ray lines is the eponymous γ-decay of nuclei. A nucleus in an excited
state, often reached through a preceding electron capture, α-, or (inverse) β-decay, can relax
to its ground state by emission of a γ-ray photon. Hence, astronomical γ-ray spectroscopy
enables the study of nucleosynthesis in a Galactic context.

Medical X-rays

For medical purposes, X-rays can be generated inside a so-called X-ray tube. In this vacuum
tube, electrons that were thermally emitted from a cathode are accelerated by high voltage
towards the anode, which they hit producing X-ray emission. This emission consists of a
bremsstrahlung continuum and line emission characteristic for the anode material. A filter
absorbs (most of) the continuous spectrum leaving the X-ray lines for the actual medical
screening.

X-rays interact with matter, primarily through photoelectric absorption (inducing bound-
bound transitions in the electron shell of an atom) or Compton scattering. The associated
(differential) loss in intensity when propagating through a medium is given by the Bouguer-
Lambert-Beer law (Kak & Slaney 1988; Hsieh 2009),

I = I0 e−a(Eν) r, (1.10)

where I is the intensity of the X-ray beam with an initial intensity I0 after propagating a
distance r through the medium. The X-ray absorption coefficient a is medium specific, but
also depends on the energy Eν of the X-rays. Hence, it is possible to distinguish different

1Para-positronium, with antiparallel spins, decays predominately into two photons, ortho-positronium into
three.
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Figure 1.1: Illustration of the γ-ray sky seen by the Fermi LAT on logarithmic false color scale in
Mollweide projection. Shown is the photon count data of 5.5 years mission elapsed time in the energy
range from 0.6 to 307.2 GeV.

media by their transmissivity. While, on the one hand, this medium dependence is the
basic working principle of medical X-ray screenings, the energy deposited inside a subject
undergoing a computed tomography (CT) screening poses a certain health risk, mainly due
to the possible corruption of Deoxyribonucleic acid (DNA) molecules.

1.1.2 Challenges in γ-ray Astronomy

As the Earth’s atmosphere shields us from high energy particles, γ-ray observatories are
required to be mounted on balloons or spacecrafts. The latest in a long series of successful γ-
ray observatories is the Fermi Gamma-ray Space Telescope hosting the Large Area Telescope
(LAT), its main instrument, and the Gamma-ray Burst Monitor.

The Fermi LAT monitors the celestial sky with unprecedented sensitivity covering an
energy range from 0.02 GeV up to above 300 GeV. Figure 1.1 shows the all-sky photon data
gathered during 5.5 years of operation.

The analysis of such data sets is a non-trivial task posing a number of challenges:

• The proper treatment of noise in experimental data. In high energy astronomy,
individual events that each summarize the arrival time, incident angle, and energy of the
photon reaching the detector are recorded. The measurement of these quantities, even if
accurately calibrated, is subject to noise. We cannot say with certainty where the photon
came from or what its energy was. The same holds for the event itself, which could just
be noise – be it a CR, instead of a photon, hitting the detector or electronic noise inside
the measurement circuit.

• The rectification of instrumental imprints and artifacts. In practice, the exe-
cution of an observation strategy often leads to spatial irregularities, as the instrument
might, for example, unevenly scan the survey area or cover it incompletely. In addition,
there are instrument characteristics, such as point spread functions, the original signal
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might be convolved with. All these instrument response functions need to be taken into
account when analyzing the data.

• The superposition of different sources. An observation commonly captures objects
that are morphologically diverse, exhibit different spectral features, and might even vary
with time. In the data, such objects appear superimposed, though. In order to study
these different sources, we are required to distinguish them by means of their emission
properties. For example, point-like and diffuse sources have very distinct spatial char-
acteristics. While the former are fairly local features, the latter can cover large areas
exhibiting smooth fluctuation.

In order to master these challenges, we have to coherently denoise, deconvolve, and decompose
high energy photon observations. The signal, the quantity we are interested in, is the γ-ray
photon flux density. Applying a morphological decomposition, we obtain a diffuse and a
point-like signal reconstruction.

From the point-like photon flux, we can infer point source candidates in order to build a
source catalog. Most of the Galactic point sources, of which the brightest are the γ-ray active
pulsars Vela, Geminga, and Crab, are located in or close to the Milky Way’s disk. Although
these three are seen at radio frequency, there are also radio-quiet gamma-pulsars. Further
Galactic point sources are supernova remnants, neutron stars with very strong magnetic fields,
so-called magnetars, or binary systems involving massive, compact objects like neutron stars
or black holes. Extragalactic point sources seem to be homogeneously distributed over the
entire sky. Some of them are so bright that they appear “quasi stellar”, so-called quasars,
although they are active nuclei of distant galaxies hosting a supermassive black hole. A
prominent example is the active galactic nucleus Centaurus A, which is so bright that it
became part of the eponymous constellation.

However, there are not only bright sources in the sky. Indeed some are so faint that
advanced image processing needs to be applied to detect them. Once identified, the sources’
flux energy spectrum and its behavior over time can be used to classify it. A point source
emitting γ-rays is likely to also be visible in observations at different energies. It is therefore
useful to collect all information on the source (candidate) in a catalog, and to update existing
catalogs when either more data or improved imaging techniques become available. In turn,
objects that have been seen at other frequencies can be searched for, and, even if they are
not verified, we can provide upper limits for their γ-ray fluxes.

Most of the diffuse γ-ray emission is of Galactic origin and captured in the diffuse signal.
The spectral properties of the diffuse flux can, as discussed in Sect. 1.1.1, give some indication
of the astrophysical emission processes. For example, the strongest diffuse flux is found along
the Galactic disk, where the ISM is dense and hadronic interactions of CRs and gas targets can
induce γ-rays. The reconstruction of the diffuse γ-ray emission can therefore provide insights
on the distribution and composition of CRs. The origin of the Giant Fermi Bubbles, two
recently discovered, symmetric outflows perpendicular to the disk, is not yet fully understood.
The spectral analysis of these diffuse structures might contribute to the resolution of this open
question.

On the other hand, the accurate reconstruction of diffuse Galactic structures is essential
for extragalactic astrophysics, where such Galactic foregrounds are a nuisance. If we are
able to reconstruct the γ-ray emission from hadronic interactions that traces the ISM, this
reconstruction could, for example, be used as a foreground template in studies of the cosmic
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Figure 1.2: Illustration of X-ray CT data on logarithmic false color scale. Shown is a 1π scan of a
single CT slice. The detector pixels are plotted along the ordinate, the 1152 projections along the axis
of abscissas in angular steps of π/1152.

microwave background. Moreover, comparing such a template to other constituents of the
ISM might yield insights on their dynamics.

1.1.3 Challenges in X-ray Computed Tomography

X-ray CT produces a three-dimensional image of a subject by performing a cylindrical scan.
Thereby, each circular slice is screened by radial projections along certain angular increments.
A typical CT data set, also called “sinogram”, of a single slice is shown in Fig. 1.2.

Apart from the measurement geometry, a CT is not too different from an astronomical
observation. We therefore face the same principle challenges as discussed in the previous sub-
section. The fact that the screened subject is exposed to an artificial X-ray source, however,
raises another challenge:

• The minimally necessary radiation dose. The absorption of X-rays can damage
living tissue and the radiation dose should therefore be kept at a minimum. However,
lowering the X-ray intensity shrinks the signal-to-noise ratio that, in turn, reduces the
image quality. Since the image needs still to be suitable for medical diagnosing, we have
to find a trade-off between necessary image quality and unnecessary exposure.

Hence, we are challenged to advance the medical imaging techniques in order to ensure (or
even improve) the image quality while diminishing the required exposure. Applying a lower
current to the X-ray tube reduces the emitted intensity and results in a lower dose for the
subject. The reduced number of X-ray photons is, however, reflected in a lower signal-to-noise
ratio. In order to address this issue, detailed knowledge of the processes that introduce noise
to the measurement is required. Alternatively, we could record fewer tomographic projections
per slice. In this way, the redundancy of the CT scan is reduced, as we effectively waive parts
of the measurement data. Since less data means weaker constraints, we are then confronted
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with a tougher inverse problem. Either way, reducing the X-ray exposure puts increased
demands on the applied imaging algorithm.

1.2 Information Theory

1.2.1 Bayesics

Information can be defined as the cause of change of rational belief. In other words, we learn
by updating our state of knowledge according to relevant information. However, information
needs to be neither consistent nor reliable. For this reason, we require a consistent measure
to judge the plausibility of information.

It can be shown that probabilities provide such a measure. Let for example the probability
P (A) describe the degree of rational belief in the argument A in terms of a positive real
number2, conventionally in the interval [0, 1]. Furthermore, probabilities are conditional,
so that P (B|A) describes the probability of statement B given statement A. The before
mentioned consistency of this measure of plausibility is warranted by, first, the sum rule for
disjoint statements {Ci}i (such as C and its negation C̄),

P (B|A) =
∑
i

P (Ci, B|A) = P (C,B|A) + P (C̄, B|A), (1.11)

and second, the product rule for conditional statements,

P (C,B|A) = P (C|B,A) · P (B|A) = P (B|C,A) · P (C|A). (1.12)

Here, commas denote conjunctions in terms of a logical “AND”.

In physics, the fundamental learning principle comes down to the confrontation of ex-
periment and theory. Since experimental data are a fundamental source of information, their
proper analysis is mandatory.

In general, we attempt to learn about a physical quantity of interest, the signal s, from
measurement data d. Before the experiment, we are in an a priori state of knowledge that
we can express in terms of a prior probability distribution P (s). After gathering the data, we
would like to infer information on the signal from our updated, a posteriori knowledge state
described by the posterior probability distribution P (s|d). Rewriting the product rule yields
Bayes’ Theorem,

P (s|d) =
P (s, d)

P (d)
=
P (d|s)P (s)

P (d)
, (1.13)

detailing the updating from prior to posterior given some data. This introduces the likelihood
P (d|s) that describes how likely it is to measure the data d when observing the signal s, and
the evidence P (d) that describes the probability of recording the data d considering any
possible signal; i.e., marginalizing with respect to the signal,

P (d) =

∫
ds P (s, d) =

∫
ds P (d|s)P (s). (1.14)

2The usage of complex valued probabilities provides a statistical approach to quantum theory (A. 1993).
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The measured data do not single out a unique signal, though. In order to infer the signal, we
thus have to resort to the posterior. The a posteriori expectation value of the signal s, which
is defined as〈

s
〉

(s|d)
=

∫
ds s1P (s|d), (1.15)

yields the most plausible signal (in terms of the posterior weighted mean signl) out of all
possible ones under the constraints of the data at hand. One reason for this signal ambiguity
is the involvement of noise that all experiments are prone to. Further, we can assess higher
order moments or cumulants of the posterior with respect to the signal. The second cumulant,
for example, describes the signal variance,

〈
s2
〉c

(s|d)
=
〈
s2
〉

(s|d)
−
〈
s
〉2

(s|d)
=

∫
ds s2P (s|d) −

(∫
ds s1P (s|d)

)2

. (1.16)

The variance describes the uncertainty margin around the inferred signal estimate, and hence
provides crucial information. Without it, we cannot reason on how significant the signal
estimate we computed is.

1.2.2 Information Fields

We only considered scalar signals, so far. If we intend to infer physical quantities like the
photon flux or matter density, we have to extend our formalism to scalar fields. Let the signal
s = s(x) be a field defined over some continuous space f with x ∈ f. Notice that s : f→ C
hence describes a continuous function, which we can evaluate at any location. In the context
of parameter inference, such a signal field s is also described as “non-parametric”, because
it is free of an a priori fixed model structure defined by a limited set of parameters. The
resulting subtleties in the calculus of information fields are detailed in Ch. 2. At this point,
we neglect the mathematical details and focus on conceptionally new aspects.

When computing the a posteriori expectation value for the signal s,〈
s
〉

(s|d)
=

∫
Ds s P (s|d), (1.17)

the integral
∫

ds is replaced by the phase space integral
∫
Ds. This phase space is huge, since

the signal is a continuous function with an infinite number of degrees of freedom and can, in
principle, attain any possible value at any position.

However, the signal field representing a physical quantity constrained by finite data is
often found to exhibit an effective, finite number of degrees of freedom. This restriction of the
phase space volume to physically plausible signal configurations can be explained by spatial
or spectral continuities and the field’s internal correlation structure. One way of introducing
such a regularization is the formulation of an a priori correlation; e.g., we could choose a
prior with a non-zero second cumulant,〈

ss†
〉c

(s)
= S. (1.18)

Here, S = S(x, y) is the prior covariance of the signal field s. It is by definition a hermitian
and positive definite linear operator. If our a priori state of knowledge, for example, assumes
the signal to be statistically homogeneous and isotropic, we suppose the covariance to only
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depend on absolute distances; i.e., S = S(x, y) = S(|x − y|). It can be shown that in this
case, the covariance is diagonal in the harmonic basis of f. If we further impose a certain
diagonal in order to fix the covariance, we constrain the statistical fluctuations the signal is
expected to exhibit. Hence, a certain continuity of the signal field is enforced.

However, such prior regularizations are merely supposed to remedy the inverse problem
by limiting the degrees of freedom. Imposing too strict priors would render the inference
ignorant to constraints by the data.

Arriving at the a posteriori knowledge state after the experiment, we can determine the
second cumulant of the posterior,〈

ss†
〉c

(s|d)
= D. (1.19)

The operator D = D(x, y), which is also referred to as information propagator (Enßlin et al.
2009), represents a covariance. Its diagonal D(x, x) therefore describes the variance of the
reconstructed signal, cf. Eq. (1.16). In this way, we can assess uncertainty information on
inferred information fields with infinitely many degrees of freedom.

1.3 Outline

The remainder of this cumulative thesis is structured as follows.

Chapter 2 is devoted to numerical information field theory (NIFTy). There, we introduce
the basic concepts of inferring continuous signal fields from noisy measurement data with an
emphasis on the formulation of inverse problems in the language of information field theory
(IFT). Furthermore, we discuss and demonstrate the implementation of inference algorithms
in a computer environment. The focus, hereby, lies on the flexibility of the NIFTy library to
accommodate algorithms on various spatial grids and at any resolution.

In Ch. 3, we derive an inference algorithm that addresses the challenging task of denois-
ing, deconvolving, and decomposing photon observations (D3PO). This derivation introduces
an elaborate measurement model, which can, not exclusively, cope with astronomical high
energy observations. We also detail all prior assumptions fold into the hierarchical Bayesian
parameter model. The fidelity of the D3PO algorithm is verified in a series of applications to
one- and two-dimensional data sets. This is possible, because the D3PO code is based on the
NIFTy library.

We apply the D3PO inference algorithm to the high energy photon data gathered by
the Fermi LAT in Ch. 4. The data set we investigate comprises γ-ray events with energies
between 0.6–307.2 GeV. Separating diffuse and point-like emission, we build a preliminary
catalog of source candidates that lists 2,522 sources. Comparing those with the second Fermi
LAT source catalog, whereby we find 1,269 associations, leaves 1,253 potentially new can-
didates. Our analysis also permits us to put upper limits on the total γ-ray flux that is to
be expected from galaxy clusters. Moreover, we analyze the energy spectrum of the diffuse
γ-ray emission and show an all-sky spectral index map for its anisotropic component. We
also find that the diffuse component is phenomenologically well described by two spectrally
and morphologically distinct components. We argue that the soft component is dominated
by emission induced by hadronic processes since it traces the dense, cold ISM, as we find by
comparing it to maps showing Galactic thermal dust emission. The hard component, in turn,
seems to predominately come from leptonic processes, such as IC scattering. It seems to trace
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the dilute, hot gas as well as bubble- and mushroom-like outflows. We also find the angular
power spectrum of the diffuse γ-ray flux to exhibit a power-law behavior on large scales.

In Ch. 5, we transfer the inference techniques, which were derived in an abstract, math-
ematical way, to the field of medical imaging. We describe how the D3PO algorithm can
easily be used to analyze medical CT data. In this context, the signal field of interest is
the physical matter density, not the astrophysical photon flux density. The reconstruction
of different slices from anonymized CT data demonstrates the functionality of our inference
techniques. This emphasizes the conceptional and practical transferability of astronomical
imaging techniques to further technologically relevant ares of application.

Finally, we conclude and give a brief outlook on future work in Ch.6.
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Chapter 2

NIFTY – Numerical Information
Field Theory
A versatile PYTHON library for signal inference

Note : This chapter, as well as App. A, has been accepted for publication in Astronomy & As-
trophysics (Selig et al. 2013).

2.1 Introduction

In many signal inference problems, one tries to reconstruct a continuous signal field from a
finite set of experimental data. The finiteness of data sets is due to their incompleteness, res-
olution, and the sheer duration of the experiment. A further complication is the inevitability
of experimental noise, which can arise from various origins. Numerous methodological ap-
proaches to such inference problems are known in modern information theory founded by Cox
(1946); Shannon (1948); Wiener (1949).

Signal inference methods are commonly formulated in an abstract, mathematical way to
be applicable in various scenarios; i.e., the method itself is independent, or at least partially
independent, of resolution, geometry, physical size, or even dimensionality of the inference
problem. It then is up to the user to apply the appropriate method correctly to the problem
at hand.

In practice, signal inference problems are solved numerically, rather than analytically.
Numerical algorithms should try to preserve as much of the universality of the underlying in-
ference method as possible, given the limitations of a computer environment, so that the code
is reusable. For example, an inference algorithm developed in astrophysics that reconstructs
the photon flux on the sky from high energy photon counts might also serve the purpose of re-
constructing two- or three-dimensional medical images obtained from tomographical X-rays.
The desire for multi-purpose, problem-independent inference algorithms is one motivation for
the NIFTy package presented here. Another is to facilitate the implementation of problem
specific algorithms by providing many of the essential operations in a convenient way.

NIFTy stands for “Numerical Information Field Theory”. It is a software package
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written in Python12, however, it also incorporates Cython3 (Behnel et al. 2009; Seljebotn
2009), C++, and C libraries for efficient computing.

The purpose of the NIFTy library is to provide a toolkit that enables users to imple-
ment their algorithms as abstractly as they are formulated mathematically. NIFTy’s field
of application is kept broad and not bound to one specific methodology. The implementa-
tion of maximum entropy (Jaynes 1957, 1989), likelihood-free, maximum likelihood, or full
Bayesian inference methods (Bayes 1763; Laplace 1795/1951; Cox 1946) are feasible, as well
as the implementation of posterior sampling procedures based on Markov chain Monte Carlo
procedures (Metropolis & Ulam 1949; Metropolis et al. 1953).

Although NIFTy is versatile, the original intention was the implementation of inference
algorithms that are formulated methodically in the language of information field theory4

(IFT). The idea of IFT is to apply information theory to the problem of signal field inference,
where “field” is the physicist’s term for a continuous function over a continuous space. The
recovery of a field that has an infinite number of degrees of freedom from finite data can be
achieved by exploiting the spatial continuity of fields and their internal correlation structures.
The framework of IFT is detailed in the work by Enßlin et al. (2009) where the focus lies on a
field theoretical approach to inference problems based on Feynman diagrams. An alternative
approach using entropic matching based on the formalism of the Gibbs free energy can be
found in the work by Enßlin & Weig (2010). IFT based methods have been developed to
reconstruct signal fields without a priori knowledge of signal and noise correlation structures
(Enßlin & Frommert 2011; Oppermann et al. 2011). Furthermore, IFT has been applied to a
number of problems in astrophysics, namely to recover the large scale structure in the cosmic
matter distribution using galaxy counts (Kitaura et al. 2009; Jasche et al. 2010b; Jasche &
Kitaura 2010; Jasche et al. 2010a; Weig & Enßlin 2010), and to reconstruct the Faraday
rotation of the Milky Way (Oppermann et al. 2012a). A more abstract application has been
shown to improve stochastic estimates such as the calculation of matrix diagonals by sample
averages (Selig et al. 2012).

One natural requirement of signal inference algorithms is their independence of the choice
of a particular grid and a specific resolution, so that the code is easily transferable to problems
that are similar in terms of the necessary inference methodology but might differ in terms
of geometry or dimensionality. In response to this requirement, NIFTy comprises several
commonly used pixelization schemes and their corresponding harmonic bases in an object-
oriented framework. Furthermore, NIFTy preserves the continuous limit by taking care of the
correct normalization of operations like scalar products, matrix-vector multiplications, and
grid transformations; i.e., all operations involving position integrals over continuous domains.

The remainder of this chapter is structured as follows. In Sec. 2.2 an introduction to
signal inference is given, with the focus on the representation of continuous information fields
in the discrete computer environment. Sec. 2.3 provides an overview of the class hierar-
chy and features of the NIFTy package. The implementation of a Wiener filter algorithm
demonstrates the basic functionality of NIFTy in Sec. 2.4. We conclude in Sec. 2.5.

1Python homepage http://www.python.org/
2NIFTy is written in Python 2 which is supported by all platforms and compatible to existing third party

packages. A Python 3 compliant version is left for a future upgrade.
3Cython homepage http://cython.org/
4IFT homepage http://www.mpa-garching.mpg.de/ift/

http://www.python.org/
http://cython.org/
http://www.mpa-garching.mpg.de/ift/
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2.2 Concepts of Signal Inference

2.2.1 Fundamental Problem

Many signal inference problems can be reduced to a single model equation,

d = f(s, . . . ), (2.1)

where the data set d is the outcome of some function f being applied to a set of unknowns.5

Some of the unknowns are of interest and form the signal s, whereas the remaining are
considered as nuisance parameters. The goal of any inference algorithm is to obtain an
approximation for the signal that is “best” supported by the data. Which criteria define this
“best” is answered differently by different inference methodologies.

There is in general no chance of a direct inversion of Eq. (2.1). Any realistic measurement
involves random processes summarized as noise and, even for deterministic or noiseless mea-
surement processes, the number of degrees of freedom of a signal typically outnumbers those
of a finite data set measured from it, because the signal of interest might be a continuous
field; e.g., some physical flux or density distribution.

In order to clarify the concept of measuring a continuous signal field, let us consider a
linear measurement by some response R with additive and signal independent noise n,

d = Rs+ n, (2.2)

which reads for the individual data points,

di =

∫
f

dx Ri(x)s(x) + ni. (2.3)

Here we introduced the discrete index i ∈ {1, . . . , N} ⊂ N and the continuous position x ∈ f
of some abstract position space f. For example, in the context of image reconstruction, i
could label the N image pixels and x would describe real space positions.

The model given by Eq. (2.2) already poses a full inference problem since it involves an
additive random process and a non-invertible signal response. As a consequence, there are
many possible field configurations in the signal phase space that could explain a given data
set. The approach used to single out the “best” estimate of the signal field from the data
at hand is up to the choice of inference methodology. However, the implementation of any
derived inference algorithm needs a proper discretization scheme for the fields defined on f.
Since one might want to extend the domain of application of a successful algorithm, it is
worthwhile to keep the implementation flexible with respect to the characteristics of f.

2.2.2 Discretized Continuum

The representation of fields that are mathematically defined on a continuous space in a finite
computer environment is a common necessity. The goal hereby is to preserve the continuum
limit in the calculus in order to ensure a resolution independent discretization.

5An alternative notation commonly found in the literature is y = f [x]. We do not use this notation in
order to avoid confusion with coordinate variables, which in physics are commonly denoted by x and y.
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Any partition of the continuous position space f (with volume V ) into a set of Q disjoint,
proper subsets fq (with volumes Vq) defines a pixelization,

f =
⋃̇
q

fq with q ∈ {1, . . . , Q} ⊂ N, (2.4)

V =

∫
f

dx =

Q∑
q=1

∫
fq

dx =

Q∑
q=1

Vq. (2.5)

Here the number Q characterizes the resolution of the pixelization, and the continuum limit
is described by Q→∞ and Vq → 0 for all q ∈ {1, . . . , Q} simultaneously. Moreover, Eq. (2.5)
defines a discretization of continuous integrals,

∫
f dx 7→

∑
q Vq.

Any valid discretization scheme for a field s can be described by a mapping,

s(x ∈ fq) 7→ sq =

∫
fq

dx wq(x)s(x), (2.6)

if the weighting function wq(x) is chosen appropriately. In order for the discretized version
of the field to converge to the actual field in the continuum limit, the weighting functions
need to be normalized in each subset; i.e., ∀q :

∫
fq dx wq(x) = 1. Choosing such a weighting

function that is constant with respect to x yields

sq =

∫
fq dx s(x)∫

fq dx
= 〈s(x)〉fq , (2.7)

which corresponds to a discretization of the field by spatial averaging. Another common and
equally valid choice is wq(x) = δ(x − xq), which distinguishes some position xq ∈ fq, and
evaluates the continuous field at this position,

sq =

∫
fq

dx δ(x− xq)s(x) = s(xq). (2.8)

In practice, one often makes use of the spatially averaged pixel position, xq = 〈x〉fq ; cf.

Eq. (2.7). If the resolution is high enough to resolve all features of the signal field s, both of
these discretization schemes approximate each other, 〈s(x)〉fq ≈ s(〈x〉fq), since they approx-

imate the continuum limit by construction.6

All operations involving position integrals can be normalized in accordance with Eqs.
(2.5) and (2.7). For example, the scalar product between two fields s and u is defined as

s†u =

∫
f

dx s∗(x)u(x) ≈
Q∑
q=1

Vq s
∗
quq , (2.9)

where † denotes adjunction and ∗ complex conjugation. Since the approximation in Eq. (2.9)
becomes an equality in the continuum limit, the scalar product is independent of the pixeliza-
tion scheme and resolution, if the latter is sufficiently high.

6The approximation of 〈s(x)〉fq
≈ s(xq ∈ fq) marks a resolution threshold beyond which further refinement

of the discretization reveals no new features; i.e., no new information content of the field s.
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NIFTy subclass corresponding grid conjugate space class

point_space unstructured list of points (none)
rg_space n-dimensional regular Euclidean grid over T n rg_space

lm_space spherical harmonics gl_space or hp_space
gl_space Gauss-Legendre grid on the S2 sphere lm_space

hp_space HEALPix grid on the S2 sphere lm_space

nested_space (arbitrary product of grids) (partial conjugation)

Table 2.1: Overview of derivatives of the NIFTy space class, the corresponding grids, and conjugate
space classes.

The above line of argumentation analogously applies to the discretization of operators.
For a linear operator A acting on some field s as As =

∫
f dy A(x, y)s(y), a matrix represen-

tation discretized in analogy to Eq. (2.7) is given by

A(x ∈ fp, y ∈ fq) 7→ Apq =

∫∫
fpfq dx dy A(x, y)∫∫

fpfq dx dy
=
〈〈
A(x, y)

〉
fp

〉
fq . (2.10)

Consequential subtleties regarding operators are addressed in App. A.1.
The proper discretization of spaces, fields, and operators, as well as the normalization of

position integrals, is essential for the conservation of the continuum limit. Their consistent
implementation in NIFTy allows a pixelization independent coding of algorithms.

2.3 Class and Feature Overview

The NIFTy library features three main classes: spaces that represent certain grids, fields that
are defined on spaces, and operators that apply to fields. In the following, we will introduce
the concept of these classes and comment on further NIFTy features such as operator probing.

2.3.1 Spaces

The space class is an abstract class from which all other specific space subclasses are derived.
Each subclass represents a grid type and replaces some of the inherited methods with its own
methods that are unique to the respective grid. This framework ensures an abstract handling
of spaces independent of the underlying geometrical grid and the grid’s resolution.

An instance of a space subclass represents a geometrical space approximated by a specific
grid in the computer environment. Therefore, each subclass needs to capture all structural
and dimensional specifics of the grid and all computationally relevant quantities such as the
data type of associated field values. These parameters are stored as properties of an instance
of the class at its initialization, and they do not need to be accessed explicitly by the user
thereafter. This prevents the writing of grid or resolution dependent code.

Spatial symmetries of a system can be exploited by corresponding coordinate transforma-
tions. Often, transformations from one basis to its harmonic counterpart can greatly reduce
the computational complexity of algorithms. The harmonic basis is defined by the eigenbasis
of the Laplace operator; e.g., for a flat position space it is the Fourier basis.7 This conjuga-

7The covariance of a Gaussian random field that is statistically homogeneous in position space becomes
diagonal in the harmonic basis.
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tion of bases is implemented in NIFTy by distinguishing conjugate space classes, which can
be obtained by the instance method get_codomain (and checked for by check_codomain).
Moreover, transformations between conjugate spaces are performed automatically if required.

Thus far, NIFTy has six classes that are derived from the abstract space class. These
subclasses are described here, and an overview can be found in Tab. 2.1.

• The point_space class merely embodies a geometrically unstructured list of points. This
simplest possible kind of grid has only one parameter, the total number of points. This
space is thought to be used as a default data space and neither has a conjugate space
nor matches any continuum limit.

• The rg_space class comprises all regular Euclidean grids of arbitrary dimension and
periodic boundary conditions. Such a grid is described by the number of grid points per
dimension, the edge lengths of one n-dimensional pixel and a few flags specifying the
origin of ordinates, internal symmetry, and basis type; i.e., whether the grid represents a
position or Fourier basis. The conjugate space of a rg_space is another rg_space that
is obtained by a fast Fourier transformation of the position basis yielding a Fourier basis
or vice versa by an inverse fast Fourier transformation.

• The spherical harmonics basis is represented by the lm_space class which is defined by the
maximum of the angular and azimuthal quantum numbers, ` and m, where mmax ≤ `max

and equality is the default. It serves as the harmonic basis for the instance of both the
gl_space and the hp_space class.

• The gl_space class describes a Gauss-Legendre grid on an S2 sphere, where the pixels
are centered at the roots of Gauss-Legendre polynomials. A grid representation is defined
by the number of latitudinal and longitudinal bins, nlat and nlon.

• The hierarchical equal area isolatitude pixelization of an S2 sphere (abbreviated as
HEALPix8) is represented by the hp_space class. The grid is characterized by twelve
basis pixels and the nside parameter that specifies how often each of them is quartered.

• The nested_space class is designed to comprise all possible product spaces constructed
out of those described above. Therefore, it is defined by an ordered list of space instances
that are meant to be multiplied by an outer product. Conjugation of this space is
conducted separately for each subspace.

For example, a 2D regular grid can be cast to a nesting of two 1D regular grids that
would then allow for separate Fourier transformations along one of the two axes.

2.3.2 Fields

The second fundamental NIFTy class is the field class whose purpose is to represent dis-
cretized fields. Each field instance has not only a property referencing an array of field values,
but also domain and target properties. The domain needs to be stated during initialization
to clarify in which space the field is defined. Optionally, one can specify a target space as
codomain for transformations; by default the conjugate space of the domain is used as the
target space.

8HEALPix homepage http://sourceforge.net/projects/healpix/

http://sourceforge.net/projects/healpix/
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method name description

cast_domain alters the field’s domain
without altering the field values or the codomain.

conjugate complex conjugates the field values.
dot applies the scalar product between two fields, returns a scalar.

tensor_dot applies a tensor product between two fields, returns a field defined in the
product space.

pseudo_dot applies a scalar product between two fields on a certain subspace of a
product space, returns a scalar or a field, depending on the subspace.

dim returns the dimensionality of the field.
norm returns the L2-norm of the field.
plot draws a figure illustrating the field.

set_target alters the field’s codomain
without altering the domain or the field values.

set_val alters the field values without altering the domain or codomain.
smooth smooths the field values in position space by convolution with a

Gaussian kernel.
transform applies a transformation from the field’s domain to some codomain.

weight multiplies the field with the grid’s volume factors (to a given power).
(and more)

Table 2.2: Selection of instance methods of the NIFTy field class.

In this way, a field is not only implemented as a simple array, but as a class instance
carrying an array of values and information about the geometry of its domain. Calling
field methods then invokes the appropriate methods of the respective space without any
additional input from the user. For example, the scalar product, computed by field.dot,
applies the correct weighting with volume factors as addressed in Sec. 2.2.2 and performs
basis transformations if the two fields to be scalar-multiplied are defined on different but
conjugate domains.9 The same is true for all other methods applicable to fields; see Tab. 2.2
for a selection of those instance methods.

Furthermore, NIFTy overloads standard operations for fields in order to support a
transparent implementation of algorithms. Thus, it is possible to combine field instances
by +,−, ∗, /, . . . and to apply trigonometric, exponential, and logarithmic functions compo-
nentwise to fields in their current domain.

2.3.3 Operators

Up to this point, we abstracted fields and their domains leaving us with a toolkit capable
of performing normalizations, field-field operations, and harmonic transformations. Now, we
introduce the generic operator class from which other, concrete operators can be derived.

In order to have a blueprint for operators capable of handling fields, any application of
operators is split into a general and a concrete part. The general part comprises the correct
involvement of normalizations and transformations, necessary for any operator type, while the

9Since the scalar product by discrete summation approximates the integration in its continuum limit, it
does not matter in which basis it is computed.
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NIFTy subclass description

operator

↪→ diagonal_operator representing diagonal matrices in a specified space.
↪→ power_operator representing covariance matrices that are defined by a power

spectrum of a statistically homogeneous and isotropic
random field.

↪→ projection_operator representing projections onto subsets of the basis of a
specified space.

↪→ vecvec_operator representing matrices of the form A = aa†, where a is
a field.

↪→ response_operator representing an exemplary response including a convolution,
masking and projection.

↪→ propagator_operator representing the Wiener information propagator.
↪→ explicit_operator representing linear operators with by explicit matrices.
(and more)

Table 2.3: Overview of derivatives of the NIFTy operator class.

concrete part is unique for each operator subclass. In analogy to the field class, any operator
instance has a set of properties that specify its domain and target as well as some additional
flags.

For example, the application of an operator A to a field s is coded as A(s), or equiv-
alently A.times(s). The instance method times then invokes _briefing, _multiply and
_debriefing consecutively. The briefing and debriefing are generic methods in which in-
and output are checked; e.g., the input field might be transformed automatically during the
briefing to match the operators domain. The _multiply method, being the concrete part, is
the only contribution coded by the user. This can be done both explicitly by multiplication
with a complete matrix or implicitly by a computer routine.

There are a number of basic operators that often appear in inference algorithms and
are therefore pre-implemented in NIFTy. An overview of pre-implemented derivatives of the
operator class can be found in Tab. 2.3.

2.3.4 Operator Probing

While properties of a linear operator, such as its diagonal, are directly accessible in case of
an explicitly given matrix, there is no direct approach for implicitly stated operators. Even
a brute force approach to calculate the diagonal elements one by one may be prohibited in
such cases by the high dimensionality of the problem.

That is why the NIFTy library features a generic probing class. The basic idea of
probing (Hutchinson 1989) is to approximate properties of implicit operators that are only
accessible at a high computational expense by using sample averages. Individual samples are
generated by a random process constructed to project the quantity of interest. For example,
an approximation of the trace or diagonal of a linear operator A (neglecting the discretization
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subtleties) can be obtained by

tr[A] ≈
〈
ξ†Aξ

〉
{ξ}

=
∑
pq

Apq 〈ξpξq〉{ξ} →
∑
p

App, (2.11)(
diag[A]

)
p
≈
(
〈ξ ∗Aξ〉{ξ}

)
p

=
∑
q

Apq 〈ξpξq〉{ξ} → App, (2.12)

where 〈 · 〉{ξ} is the sample average of a sample of random fields ξ with the property 〈ξpξq〉{ξ} →
δpq for |{ξ}| → ∞ and ∗ denotes componentwise multiplication, cf. (Selig et al. 2012, and
references therein). One of many possible choices for the random values of ξ are equally
probable values of ±1 as originally suggested by Hutchinson (1989). Since the residual error
of the approximation decreases with the number of used samples, one obtains the exact result
in the limit of infinitely many samples. In practice, however, one has to find a trade-off
between acceptable numerical accuracy and affordable computational cost.

The NIFTy probing class allows for the implementation of arbitrary probing schemes.
Because each sample can be computed independently, all probing operations take advantage
of parallel processing for reasons of efficiency, by default. There are two derivatives of the
probing class implemented in NIFTy, the trace_probing and diagonal_probing subclasses,
which enable the probing of traces and diagonals of operators, respectively.

An extension to improve the probing of continuous operators by exploiting their internal
correlation structure as suggested in the work by Selig et al. (2012) is planned for a future
version of NIFTy.

2.3.5 Parallelization

The parallelization of computational tasks is supported. NIFTy itself uses a shared memory
parallelization provided by the Python standard library multiprocessing10 for probing.
If parallelization within NIFTy is not desired or needed, it can be turned off by the global
setting flag about.multiprocessing.

Nested parallelization is not supported by Python; i.e., the user has to decide between
the usage of parallel processing either within NIFTy or within dependent libraries such as
HEALPix.

2.4 Demonstration

An established and widely used inference algorithm is the Wiener filter (Wiener 1949) whose
implementation in NIFTy shall serve as a demonstration example.

The underlying inference problem is the reconstruction of a signal, s, from a data set, d,
that is the outcome of a measurement process (2.2), where the signal response, Rs, is linear
in the signal and the noise, n, is additive. The statistical properties of signal and noise are
both assumed to be Gaussian,

sx G(s,S) ∝ exp
(
−1

2s
†S−1s

)
, (2.13)

nx G(n,N). (2.14)

10Python documentation http://docs.python.org/2/library/multiprocessing.html

http://docs.python.org/2/library/multiprocessing.html
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1: Illustration of the Wiener filter code example showing (left to right) a Gaussian random
signal (a,d,g), the data including noise (b,e,h), and the reconstructed map (c,f,i). The additive Gaus-
sian white noise has a variance σ2

n that sets a signal-to-noise ratio 〈σs〉f /σn of roughly 2. The same
code has been applied to three different spaces (top to bottom), namely a 1D regular grid with 512
pixels (a,b,c), a 2D regular grid with 256× 256 pixels (d,e,f), and a HEALPix grid with nside = 128
corresponding to 196, 608 pixels on the S2 sphere (g,h,i). (All figures have been created by NIFTy
using the field.plot method.)

Here, the signal and noise covariances, S andN , are known a priori. The a posteriori solution
for this inference problem can be found in the expectation value for the signal m = 〈s〉(s|d)

weighted by the posterior P (s|d) . This map can be calculated with the Wiener filter equation,

m =
(
S−1 +R†N−1R

)−1

︸ ︷︷ ︸
D

(
R†N−1d

)
︸ ︷︷ ︸

j

, (2.15)

which is linear in the data. In the IFT framework, this scenario corresponds to a free theory
as discussed in the work by Enßlin et al. (2009), where a derivation of Eq. (2.15) can be
found. In analogy to quantum field theory, the posterior covariance, D, is referred to as the
information propagator and the data dependent term, j, as the information source.

The NIFTy based implementation is given in App. A.3, where a unit response and noise
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(a) (b) (c)

Figure 2.2: Illustration of the 1D reconstruction results. Panel (a) summarizes the results from
Fig. 2.1 by showing the original signal (red dashed line), the reconstructed map (green solid line),
and the 1σ-confidence interval (gray contour) obtained from the square root of the diagonal of the
posterior covariance D that has been computed using probing; cf. Eq. (2.12). Panel (b) shows the
1D data set from Fig. 2.1 with a blinded region in the interval [0.5, 0.7]. Panel (c) shows again the
original signal (red, dashed line), the map reconstructed from the partially blinded data (green solid
line), and the corresponding 1σ-interval (gray contour) which is significantly enlarged in the blinded
region indicating the uncertainty of the interpolation therein.

covariance are used.11 This implementation is not only easily readable, but it also solves
for m regardless of the chosen signal space; i.e., regardless of the underlying grid and its
resolution. The functionality of the code for different signal spaces is illustrated in Fig. 2.1.
The performance of this implementation is exemplified in Fig. 2.3 for different signal spaces
and sizes of data sets. A qualitative power law behavior is apparent, but the quantitative
performance depends strongly on the used machine.

The confidence in the quality of the reconstruction can be expressed in terms of a 1σ-
confidence interval that is related to the diagonal of D as follows,

σ(m) =
√

diag[D]. (2.16)

The operator D defined in Eq. (2.15) may involve inversions in different bases and thus
is accessible explicitly only with major computational effort. However, its diagonal can be
approximated efficiently by applying operator probing (2.12). Figure 2.2 illustrates the 1D
reconstruction results in order to visualize the estimates obtained with probing and to em-
phasize the importance of a posteriori uncertainties.

The Wiener filter code example given in App. A.3 can easily be modified to handle more
complex inference problems. In Fig. 2.4, this is demonstrated for the image reconstruction
problem of the classic “Moon Surface” image12. During the data generation (2.2), the signal
is convolved with a Gaussian kernel, multiplied with some structured mask, and finally, con-
taminated by inhomogeneous Gaussian noise. Despite these complications, the Wiener filter
is able to recover most of the original signal field.

NIFTy can also be applied to non-linear inference problems, as has been demonstrated
in the reconstruction of log-normal fields with a priori unknown covariance and spectral
smoothness (Oppermann et al. 2012b; Greiner & Enßlin 2013). Since its release, a wide range
of scientific projects have made use of NIFTy, including, among others, studies of primordial
non-Gaussianities (Dorn et al. 2013, 2014), inference of Galactic and extragalactic Faraday

11The Wiener filter demonstration is also part of the NIFTy package; see nifty/demos/demo_excaliwir.py

for an extended version.
12Source taken from the USC-SIPI image database at http://sipi.usc.edu/database/

http://sipi.usc.edu/database/
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Figure 2.3: Illustration of the performance of the Wiener filter code given in App. A.3 showing com-
putation time against the size of the data set (ranging from 512 to 256 × 256 × 256 data points) for
different signal spaces (see legend). The markers show the average runtime of multiple runs, and the
error bars indicate their variation. (Related markers are solely connected to guide the eye.)

rotation (Oppermann et al. 2014), and the development of novel self-calibration schemes
(Enßlin et al. 2013), as well as applications in the area of Galactic tomography (Greiner et al.
2014) and weak gravitational lensing (Böhm et al. 2014), which are currently in preparation.
Moreover, NIFTy is the foundation of the RESOLVE code for aperture synthesis imaging in
radio astronomy (Junklewitz et al. 2013, 2014) and the D3PO code for denoising, deconvolving
and decomposing photon observations discussed in Ch. 3 (Selig & Enßlin 2013).

2.5 Conclusions & Summary

The NIFTy library enables the programming of grid and resolution independent algorithms.
In particular for signal inference algorithms, where a continuous signal field is to be recov-
ered, this freedom is desirable. This is achieved with an object-oriented infrastructure that
comprises, among others, abstract classes for spaces, fields, and operators. NIFTy supports
a consistent discretization scheme that preserves the continuum limit. Proper normalizations
are applied automatically, which makes considerations by the user concerning this matter (al-
most) superfluous. NIFTy offers a straightforward transition from formulas to implemented
algorithms thereby speeding up the development cycle. Inference algorithms that have been
coded using NIFTy are reusable for similar inference problems even though the underlying
geometrical space may differ.

The application areas of NIFTy are widespread and include inference algorithms derived
within both information field theory and other frameworks. The successful application of a
Wiener filter to non-trivial inference problems illustrates the flexibility of NIFTy. The very
same code runs successfully whether the signal domain is an n-dimensional regular or a
spherical grid. Moreover, NIFTy has already been applied to the reconstruction of Gaussian
and log-normal fields (Oppermann et al. 2012b) and many other projects.

The NIFTy source code and online documentation is publicly available on the project
homepage http://www.mpa-garching.mpg.de/ift/nifty/.

http://www.mpa-garching.mpg.de/ift/nifty/
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Application of a Wiener filter to the classic “Moon Surface” image on a 2D regular grid
with 256 × 256 pixels showing (top, left to right) the original “Moon Surface” signal (a), the data
including noise (b), and the reconstructed map (c). The response operator involves a convolution
with a Gaussian kernel (d) and a masking (e). The additive noise is Gaussian white noise with an
inhomogeneous standard deviation (f) that approximates an overall signal-to-noise ratio 〈σs〉f / 〈σn〉f
of roughly 1. (All figures have been created by NIFTy using the field.plot method.)
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Chapter 3

Denoising, Deconvolving, and
Decomposing Photon Observations
Derivation of the D3PO Algorithm

Note : This chapter, as well as App. B, has been accepted for publication in Astronomy & As-
trophysics (Selig & Enßlin 2013).

3.1 Introduction

An astronomical image might display multiple superimposed features, such as “point sources”,
“compact objects”, “diffuse emission”, or “background radiation”. The raw photon count
images delivered by high energy telescopes are far from perfect suffering from shot noise
and distortions due to instrumental effects. The analysis of such astronomical observations
demands elaborate denoising, deconvolution, and decomposition strategies.

The data obtained by the detection of individual photons is subject to Poissonian shot
noise which is more severe for low count rates. This cumbers the discrimination of faint sources
against noise, and makes their detection exceptionally challenging. Furthermore, uneven or
incomplete survey coverage and complex instrumental response functions leave imprints in the
photon data. As a result, the data set might exhibit gaps and artificial distortions rendering
the clear recognition of different features a difficult task. Especially point-like sources are
afflicted by the instrument’s point spread function (PSF) that smooths them out in the
observed image, and therefore can cause fainter ones to vanish completely in the background
noise.

In addition to such noise and convolution effects, it is the superposition of the different
objects that makes their separation ambiguous, if possible at all. In astrophysics, photon
emitting objects are commonly divided into two morphological classes, diffuse sources and
point sources. Diffuse sources span rather smoothly across large fractions of an image, and
exhibit apparent internal correlations. Point sources, on the contrary, are local features
that, if observed perfectly, would only appear in one pixel of the image. In this work, we
will not distinguish between diffuse sources and background, both are diffuse contributions.
Intermediate cases, which are sometimes classified as “extended” or “compact” sources, are
also not considered here.

The question arises, how to reconstruct the original source contributions, the individual
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signals, that caused the observed photon data. This task is an ill-posed inverse problem
without an unique solution. There are a number of heuristic and probabilistic approaches
that address the problem of denoising, deconvolution, and decomposition in parts or simpler
settings.

SExtractor (Bertin & Arnouts 1996) is one of the heuristic kind and the most promi-
nent tool for identifying sources in astronomy. Its popularity is mostly based on its speed
and easy operability. However, SExtractor produces a catalog of fitted sources rather than
denoised and deconvolved signal estimates. CLEAN (Högbom 1974) is commonly used in
radio astronomy and attempts a deconvolution assuming there are only contributions from
point sources. Therefore, diffuse emission is not optimally reconstructed in the analysis of
real observations using CLEAN. Multiscale extensions of CLEAN (Cornwell 2008; Rau &
Cornwell 2011) improve on this, but are also not prefect (Junklewitz et al. 2013). Decom-
position techniques for diffuse backgrounds, based on the analysis of angular power spectra,
have recently been proposed by Hensley et al. (2013).

Inference methods, in contrast, investigate the probabilistic relation between the data and
the signals. Here, the signals of interest are the different source contributions. Probabilistic
approaches allow a transparent incorporation of model and a priori assumptions, but often
result in computationally heavier algorithms.

As an initial attempt, a maximum likelihood analysis was proposed by Valdes (1982). In
later work, maximum entropy (Strong 2003) and minimum χ2 methods (e.g., Bouchet et al.
2013) were applied to the INTEGRAL/SPI data reconstructing a single signal component,
though. On the basis of sparse regularization a number of techniques exploiting waveforms
(based on the work by Haar 1910, 1911) have proven successful in performing denoising and
deconvolution tasks in different settings (González-Nuevo et al. 2006; Willett & Nowak 2007;
Dupe et al. 2009; Figueiredo & Bioucas-Dias 2010; Dupé et al. 2011). For example, Schmitt
et al. (2010, 2012) analyzed simulated (single and multi-channel) data from the Fermi γ-ray
space telescope focusing on the removal of Poisson noise and deconvolution or background
separation. Furthermore, a (generalized) morphological component analysis denoised, decon-
volved and decomposed simulated radio data assuming Gaussian noise statistics (Bobin et al.
2007; Chapman et al. 2013).

Still in the regime of Gaussian noise, Giovannelli & Coulais (2005) derived a deconvo-
lution algorithm for point and extended sources minimizing regularized least squares. They
introduce an efficient convex regularization scheme at the price of a priori unmotivated fine
tuning parameters. The fast algorithm PowellSnakes I/II by Carvalho et al. (2009, 2012) is
capable of analyzing multi-frequency data sets and detecting point-like objects within diffuse
emission regions. It relies on matched filters using PSF templates and Bayesian filters ex-
ploiting, among others, priors on source position, size, and number. PowellSnakes II has been
successfully applied to the Planck data (Planck Collaboration et al. 2011).

The approach closest to ours is the background-source separation technique used to
analyze the ROSAT data (Guglielmetti et al. 2009). This Bayesian model is based on a
two-component mixture model that reconstructs extended sources and (diffuse) background
concurrently. The latter is, however, described by a spline model with a small number of
spline sampling points.

In this work, we exclusively consider Poissonian noise, in particular, but not exclusively,
in the low count rate regime, where the signal-to-noise ratio becomes challengingly low. The
D3PO algorithm presented here targets the simultaneous denoising, deconvolution, and de-
composition of photon observations into two signals, the diffuse and point-like photon flux.
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Figure 3.1: Illustration of a 1D reconstruction scenario with 1024 pixels. Panel (a) shows the superim-
posed diffuse and point-like signal components (green solid line) and its observational response (gray
contour). Panel (b) shows again the signal response representing noiseless data (gray contour) and the
generated Poissonian data (red markers). Panel (c) shows the reconstruction of the point-like signal
component (blue solid line), the diffuse one (orange solid line), its 2σ reconstruction uncertainty inter-
val (orange dashed line), and again the original signal response (gray contour). The point-like signal
comprises 1024 point-sources of which only 5 are not invisibly faint. Panel (d) shows the reproduced
signal response representing noiseless data (black solid line), its 2σ shot noise interval (black dashed
line), and again the data (gray markers).
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This task includes the reconstruction of the harmonic power spectrum of the diffuse
component from the data themselves. Moreover, the proposed algorithm provides a posteriori
uncertainty information on both inferred signals.

The fluxes from diffuse and point-like sources contribute equally to the observed photon
counts, but their morphological imprints are very different. The proposed algorithm, derived
in the framework of information field theory (IFT) (Enßlin et al. 2009; Enßlin 2013, 2014),
therefore incorporates prior assumptions in form of a hierarchical parameter model. The fun-
damentally different morphologies of diffuse and point-like contributions reflected in different
prior correlations and statistics. The exploitation of these different prior models is key to the
signal decomposition.

The diffuse and point-like signal are treated as two separate signal fields. A signal field
represents an original signal appearing in nature; e.g., the physical photon flux distribution of
one source component as a function of real space or sky position. In theory, a field has infinitely
many degrees of freedom being defined on a continuous position space. In computational
practice, however, a field needs of course to be defined on a finite grid. It is desirable that the
signal field is reconstructed independently from the grid’s resolution, except for potentially
unresolvable features.1 Notice that the point-like signal field hosts one point source in every
pixel, however, most of them might be invisibly faint. Hence, a complicated determination of
the number of point sources, as many algorithms perform, is not required in our case.

The derivation of the algorithm makes use of a wide range of Bayesian methods that are
discussed below in detail with regard to their implications and applicability. For now, let us
consider an example to emphasize the range and performance of the D3PO algorithm.

Figure 3.1 illustrates a reconstruction scenario in one dimension, where the coordinate
could be an angle or position (or time, or energy) in order to represent a 1D sky (or a time
series, or an energy spectrum). The numerical implementation uses the NIFTy2 package
(Selig et al. 2013). NIFTy permits that an algorithm can be set up abstractly, independent
of the finally chosen topology, dimension, or resolution of the underlying position space. In
this way, a 1D prototype code can be used for development, and then just be applied in 2D,
3D, or even on the sphere.

The remainder of this chapter is structured as follows. Sec. 3.2 discusses the inference on
photon observations; i.e., the underlying model and prior assumptions. The D3PO algorithm
solving this inference problem by denoising, deconvolution, and decomposition is derived in
Sec. 3.3. In Sec. 3.4 the algorithm is demonstrated in a numerical application on simulated
high energy photon data. We conclude in Sec. 3.5.

1If the resolution of the reconstruction would be increased gradually, the diffuse signal field might exhibit
more and more small scale features until the information content of the given data is exhausted. From this
point on, any further increase in resolution would not change the signal field reconstruction significantly. In
a similar manner, the localization accuracy and number of detections of point sources might increase with
the resolution until all relevant information of the data was captured. All higher resolution grids can then be
regarded as acceptable representations of the continuous position space.

2NIFTy homepage http://www.mpa-garching.mpg.de/ift/nifty/

http://www.mpa-garching.mpg.de/ift/nifty/
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3.2 Inference on Photon Observations

3.2.1 Signal Inference

Here, a signal is defined as an unknown quantity of interest that we want to learn about.
The most important information source on a signal is the data obtained in an observation
to measure the signal. Inferring a signal from an observational data set poses a fundamental
problem due to the presence of noise in the data and the ambiguity that several possible
signals could have produced the same data, even in the case of negligible noise.

For example, given some image data like photon counts, we want to infer the underlying
photon flux distribution. This physical flux is a continuous scalar field that varies with respect
to time, energy, and observational position. The measured photon count data, however, is
restricted by its spatial and energy binning, as well as its limitations in energy range and
observation time. Basically, all data sets are finite for practical reasons, and therefore cannot
capture all of the infinitely many degrees of freedom of the underlying continuous signal field.

There is no exact solution to such signal inference problems, since there might be (in-
finitely) many signal field configurations that could lead to the same data. This is why a
probabilistic data analysis, which does not pretend to calculate the correct field configuration
but provides expectation values and uncertainties of the signal field, is appropriate for signal
inference.

Given a data set d, the a posteriori probability distribution P (s|d) judges how likely a
potential signal s is. This posterior is given by Bayes’ theorem,

P (s|d) =
P (d|s)P (s)

P (d)
, (3.1)

as a combination of the likelihood P (d|s), the signal prior P (s), and the evidence P (d), which
serves as a normalization. The likelihood characterizes how likely it is to measure data set d
from a given signal field s. It covers all processes that are relevant for the measurement of
d. The prior describes the knowledge about s without considering the data, and should, in
general, be less restrictive than the likelihood.

IFT is a Bayesian framework for the inference of signal fields exploiting mathematical
methods for theoretical physics. A signal field, s = s(x), is a function of a continuous
position x in some position space f. In order to avoid a dependence of the reconstruction on
the partition of f, the according calculus regarding fields is geared to preserve the continuum
limit, cf. (Enßlin 2013, 2014; Selig et al. 2013). In general, we are interested in the a posteriori
mean estimatem of the signal field given the data, and its (uncertainty) covarianceD, defined
as

m = 〈s〉(s|d) =

∫
Ds s P (s|d), (3.2)

D =
〈

(m− s)(m− s)†
〉

(s|d)
, (3.3)

where † denotes adjunction and 〈 · 〉(s|d) the expectation value with respect to the posterior

probability distribution P (s|d).3

3This expectation value is computed by a path integral,
∫
Ds, over the complete phase space of the signal

field s; i.e. all possible field configurations.
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In the following, the posterior of the physical photon flux distribution of two morpho-
logically different source components given a data set of photon counts is build up piece by
piece according to Eq. (3.1).

3.2.2 Poissonian Likelihood

The images provided by astronomical high energy telescopes typically consist of integer photon
counts that are binned spatially into pixels. Let di be the number of detected photons, also
called events, in pixel i, where i ∈ {1, . . . , Npix} ⊂ N.

The kind of signal field we would like to infer from such data is the causative photon flux
distribution. The photon flux, ρ = ρ(x), is defined for each position x on the observational
space f. In astrophysics, this space f is typically the S2 sphere representing an all-sky view,
or a region within R2 representing an approximately plane patch of the sky. The flux ρ might
express different morphological features, which can be classified into a diffuse and point-like
component. The exact definitions of the diffuse and point-like flux should be specified a priori,
without knowledge of the data, and are addressed in Sec. 3.2.3 and 3.2.3, respectively. At
this point it shall suffices to say that the diffuse flux varies smoothly on large spatial scales,
while the flux originating from point sources is fairly local. These two flux components are
superimposed,

ρ = ρdiffuse + ρpoint−like = ρ0 (es + eu) , (3.4)

where we introduced the dimensionless diffuse and point-like signal fields, s and u, and the
constant ρ0 which absorbs the physical dimensions of the photon flux; i.e., events per area per
energy and time interval. The exponential function in Eq. (3.4) is applied componentwise.
In this way, we naturally account for the strict positivity of the photon flux at the price of a
non-linear change of variables, from the flux to its natural logarithm.

A measurement apparatus observing the photon flux ρ is expected to detect a certain
number of photons λ. This process can be modeled by a linear response operator R0 as
follows,

λ = R0ρ = R (es + eu) , (3.5)

where R = R0ρ0. This reads for pixel i,

λi =

∫
f

dx Ri(x)
(

es(x) + eu(x)
)
. (3.6)

The response operator R0 comprises all aspects of the measurement process; i.e., all instru-
ment response functions. This includes the survey coverage, which describes the instrument’s
overall exposure to the observational area, and the instrument’s PSF, which describes how a
point source is imaged by the instrument.

The superposition of different components and the transition from continuous coordinates
to some discrete pixelization, cf. Eq. (3.6), cause a severe loss of information about the original
signal fields. In addition to that, measurement noise distorts the signal’s imprint in the data.
The individual photon counts per pixel can be assumed to follow a Poisson distribution P
each. Therefore, the likelihood of the data d given an expected number of events λ is modeled
as a product of statistically independent Poisson processes,

P (d|λ) =
∏
i

P(di, λi) =
∏
i

1

di!
λdii e−λi . (3.7)
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The Poisson distribution has a signal-to-noise ratio of
√
λ which scales with the expected

number of photon counts. Therefore, Poissonian shot noise is most severe in regions with
low photon fluxes. This makes the detection of faint sources in high energy astronomy a
particularly challenging task, as X- and γ-ray photons are sparse.

The likelihood of photon count data given a two component photon flux is hence de-
scribed by the Eqs. (3.5) and (3.7). Rewriting this likelihood P (d|s,u) in form of its negative
logarithm yields the information Hamiltonian H(d|s,u),4

H(d|s,u) = − logP (d|s,u) (3.8)

= H0 + 1†λ− d† log(λ) (3.9)

= H0 + 1†R (es + eu)− d† log (R (es + eu)) , (3.10)

where the ground state energy H0 comprises all terms constant in s and u, and 1 is a constant
data vector being 1 everywhere.

3.2.3 Prior Assumptions

The diffuse and point-like signal fields, s and u, contribute equally to the likelihood defined
by Eq. (3.10), and thus leaving it completely degenerate. On the mere basis of the likelihood,
the full data set could be explained by the diffuse signal alone, or by point-sources only, or
any other conceivable combination. In order to downweight intuitively implausible solutions,
we introduce priors.

The priors discussed in the following address the morphology of the different photon flux
contributions, and define “diffuse” and “point-like” in the first place. These priors aid the
reconstruction by providing some remedy for the degeneracy of the likelihood. The likelihood
describes noise and convolution properties, and the prior describe the individual morphological
properties. Therefore, the denoising and deconvolution of the data towards the total photon
flux ρ is primarily likelihood driven, but for a decomposition of the total photon flux into ρ(s)

and ρ(u), the signal priors are imperative.

Diffuse Component

The diffuse photon flux, ρ(s) = ρ0es, is strictly positive and might vary in intensity over several
orders of magnitude. Its morphology shows cloudy patches with smooth fluctuations across
spatial scales; i.e., one expects similar values of the diffuse flux in neighboring locations. In
other words, the diffuse component exhibits spatial correlations. A log-normal model for ρ(s)

satisfies those requirements according to the maximum entropy principle (Oppermann et al.
2012b; Kinney 2013). If the diffuse photon flux follows a multivariate log-normal distribution,
the diffuse signal field s obeys a multivariate Gaussian distribution G,

P (s|S) = G(s,S) =
1√

det[2πS]
exp

(
−1

2
s†S−1s

)
, (3.11)

with a given covariance S =
〈
ss†
〉

(s|S)
. This covariance describes the strength of the spatial

correlations, and thus the smoothness of the fluctuations.

4Throughout this work we define H( · ) = − logP ( · ), and absorb constant terms into a normalization
constant H0 in favor of clarity.
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A convenient parametrization of the covariance S can be found, if the signal field s is
a priori not known to distinguish any position or orientation axis; i.e., its correlations only
depend on relative distances. This is equivalent to assume s to be statistically homogeneous
and isotropic. Under this assumption, S is diagonal in the harmonic basis5 of the position
space f such that

S =
∑
k

eτkSk, (3.12)

where τk are spectral parameters and Sk are projections onto a set of disjoint harmonic
subspaces of f. These subspaces are commonly denoted as spectral bands or harmonic modes.
The set of spectral parameters, τ = {τk}k, is then the logarithmic power spectrum of the
diffuse signal field s with respect to the chosen harmonic basis denoted by k.

However, the diffuse signal covariance is in general unknown a priori. This requires the
introduction of another prior for the covariance, or for the set of parameters τ describing it
adequately. This approach of hyperpriors on prior parameters creates a hierarchical parameter
model.

Unknown Power Spectrum

The lack of knowledge of the power spectrum, requires its reconstruction from the same data
the signal is inferred from (Wandelt et al. 2004; Jasche et al. 2010b; Enßlin & Frommert 2011;
Jasche & Wandelt 2013). Therefore, two a priori constraints for the spectral parameters τ ,
which describe the logarithmic power spectrum, are incorporated in the model.

The power spectrum is unknown and might span over several orders of magnitude. This
implies a logarithmically uniform prior for each element of the power spectrum, and a uniform
prior for each spectral parameter τk, respectively. Let us initially assume independent inverse-
Gamma distributions I for the individual elements,

P (eτ |α, q) =
∏
k

I(eτk , αk, qk) =
∏
k

qαk−1
k

Γ(αk − 1)
e−(αkτk+qke−τk), (3.13)

and hence

Pun(τ |α, q) =
∏
k

I(eτk , αk, qk)

∣∣∣∣deτk

dτk

∣∣∣∣ ∝ exp
(
− (α− 1)†τ − q†e−τ

)
, (3.14)

where α = {αk}k and q = {qk}k are the shape and scale parameters, and Γ denotes the
Gamma function. In the limit of αk → 1 and qk → 0 ∀k, the inverse-Gamma distributions
become asymptotically flat on a logarithmic scale, and thus Pun constant.6 Small non-zero
scale parameters, 0 < qk, provide lower limits for the power spectrum that, in practice, lead
to more stable inference algorithms.

So far, the variability of the individual elements of the power spectrum is accounted for,
but the question about their correlations has not been addressed. Empirically, power spectra

5The basis in which the Laplace operator is diagonal is denoted harmonic basis. If f is a n-dimensional
Euclidean space Rn or Torus T n, the harmonic basis is the Fourier basis; if f is the S2 sphere, the harmonic
basis is the spherical harmonics basis.

6If P (τk = log z) = const., then a substitution yields P (z) = P (log z) |d(log z)/dz| ∝ z−1 ∼ I(z, α →
1, q → 0).
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of a diffuse signal field do not exhibit wild fluctuation or change drastically over neighboring
modes. They rather show some sort of spectral smoothness. Moreover, for diffuse signal fields
that were shaped by local and causal processes, we might expect a finite correlation support in
position space. This translates into a smooth power spectrum. In order to incorporate spectral
smoothness, we employ a prior introduced by Enßlin & Frommert (2011); Oppermann et al.
(2012b). This prior is based on the second logarithmic derivative of the spectral parameters
τ , and favors power spectra that obey a power-law. It reads

Psm(τ |σ) ∝ exp

(
−1

2
τ †Tτ

)
, (3.15)

with

τ †Tτ =

∫
d(log k)

1

σ2
k

(
∂2τk

∂(log k)2

)2

, (3.16)

where σ = {σk}k are Gaussian standard deviations specifying the tolerance against deviation
from a power-law behavior of the power spectrum. A choice of σk = 1 ∀k would typically
allow for a change of the power-law’s slope of 1 per e-fold in k. In the limit of σk → ∞ ∀k,
no smoothness is enforced upon the power spectrum.

The resulting prior for the spectral parameters is given by the product of the priors
discussed above,

P (τ |α, q,σ) = Pun(τ |α, q) Psm(τ |σ). (3.17)

The parameters α, q and σ are considered to be given as part of the hierarchical Bayesian
model, and provide a flexible handle to model our knowledge on the scaling and smoothness
of the power spectrum.

Point-like Component

The point-like photon flux, ρ(u) = ρ0eu, is supposed to originate from very distant astrophys-
ical sources. These sources appear morphologically point-like to an observer because their
actual extent is negligible due to the extreme distances. This renders point sources to be spa-
tially local phenomena. The photon flux contributions of neighboring point sources can (to
zeroth order approximation) be assumed to be statistically independent of each other. Even
if the two sources are very close on the observational plane, their physical distance might
be huge. Even in practice, the spatial cross-correlation of point sources is negligible. There-
fore, statistically independent priors for the photon flux contribution of each point-source are
assumed in the following.

Due to the spatial locality of a point source, the corresponding photon flux signal is
supposed to be confined to a single spot, too. If the point-like signal field, defined over a
continuous position space f, is discretized properly7, this spot is sufficiently identified by an
image pixel in the reconstruction. A discretization, ρ(x ∈ f) → (ρx)x, is an inevitable step
since the algorithm is to be implemented in a computer environment anyway. Nevertheless,
we have to ensure that the a priori assumptions do not depend on the chosen discretization
but satisfy the continuous limit.

7The numerical discretization of information fields is described in great detail in Selig et al. (2013).
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Therefore, the prior for the point-like signal component factorizes spatially,

P (ρ(u)) =
∏
x

P (ρ(u)
x ), (3.18)

but the functional form of the priors are yet to be determined. This model allows the point-
like signal field to host one point source in every pixel. Most of these point sources are
expected to be invisibly faint contributing negligibly to the total photon flux. However, the
point sources which are just identifiable from the data are pinpointed in the reconstruction.
In this approach, there is no necessity for a complicated determination of the number and
position of sources.

For the construction of a prior, it further needs to be considered that the photon flux is
a strictly positive quantity. Thus, a simple exponential prior,

P (ρ(u)
x ) ∝ exp

(
−ρ(u)

x /ρ0

)
, (3.19)

has been suggested (e.g., Guglielmetti et al. 2009). It has the advantage of being (easily) an-
alytically treatable, but its physical implications are questionable. This distribution strongly
suppresses high photon fluxes in favor of lower ones. The maximum entropy prior, which is
also often applied, is even worse because it corresponds to a brightness distribution,8

P (ρ(u)
x ) ∝

(
ρ(u)
x /ρ0

)(−ρ(u)x /ρ0
)
. (3.20)

The following (rather crude) consideration might motivate a more astrophysical prior. Say
the universe hosts a homogeneous distribution of point sources. The number of point sources
would therefore scale with the observable volume; i.e., with distance cubed. Their apparent
brightness, which is reduced due to the spreading of the light rays; i.e., a proportionality to the
distance squared. Consequently, a power-law behavior between the number of point sources
and their brightness with a slope β = 3

2 is to be expected (Fomalont 1968; Malyshev & Hogg
2011). However, such a plain power-law diverges at 0, and is not necessarily normalizable.
Furthermore, galactic and extragalactic sources can not be found in arbitrary distances due to
the finite size of the Galaxy and the cosmic (past) light cone. Imposing an exponential cut-off
above 0 onto the power-law yields an inverse-Gamma distribution, which has been shown to
be an appropriate prior for point-like photon fluxes (Guglielmetti et al. 2009; Carvalho et al.
2009, 2012).

The prior for the point-like signal field is therefore derived from a product of independent
inverse-Gamma distributions,9

P (ρ(u)|β,η) =
∏
x

I(ρ(u)
x , βx, ρ0ηx) =

∏
x

(ρ0ηx)βx−1

Γ(βx − 1)

(
ρ(u)
x

)−βx
exp

(
−ρ0ηx

ρ
(u)
x

)
, (3.21)

yielding

P (u|β,η) =
∏
x

I(ρ0eux , βk, ρ0ηk)

∣∣∣∣dρ0eux

dux

∣∣∣∣ ∝ exp
(
− (β − 1)†u− η†e−u

)
, (3.22)

8The so-called maximum entropy regularization
∑
x(ρ

(u)
x /ρ0) log(ρ

(u)
x /ρ0) of the log-likelihood can be re-

garded as log-prior, cf. Eqs. (3.18) and (3.20).
9A possible extension of this prior model that includes spatial correlations would be an inverse-Wishart

distribution for diag[ρ(u)].
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Figure 3.2: Graphical model of the model parameters α, q, σ, β, and η, the logarithmic spectral
parameters τ , the diffuse signal field s, the point-like signal field u, the total photon flux ρ, the
expected number of photons λ, and the observed photon count data d.

where β = {βx}x and η = {ηx}x are the shape and scale parameters. The latter is responsible
for the cut-off of vanishing fluxes, and should be chosen adequately small in analogy to the
spectral scale parameters q. The determination of the shape parameters is more difficile.
The geometrical argument above suggests a universal shape parameter, βx = 3

2 ∀x. A second
argument for this value results from demanding a priori independence of the discretization.
If we choose a coarser resolution that would add up the flux from two point sources at merged
pixels, then our prior should still be applicable. The universal value of 3

2 indeed fulfills this
requirement as shown in App. B.1. There it is also shown that η has to be chosen resolution
dependent, though.

3.2.4 Parameter Model

Figure 3.2 gives an overview of the parameter hierarchy of the suggested Bayesian model.
The data d is given, and the diffuse signal field s and the point-like signal field u shall
be reconstructed from that data. The logarithmic power spectrum τ is a set of nuisance
parameters that also need to be reconstructed from the data in order to accurately model
the diffuse flux contributions. The model parameters form the top layer of this hierarchy and
are given to the reconstruction algorithm. This set of model parameters can be boiled down
to five scalars, namely α, q, σ, β, and η, if one defines α = α1, etc. The incorporation of
the scalars in the inference is possible in theory, but this would increase the computational
complexity dramatically.

We discussed reasonable values for these scalars to be chosen a priori. If additional
information sources, such as theoretical power spectra or object catalogs, are available the
model parameters can be adjusted accordingly. In Sec. 3.4, different parameter choices for
the analysis of simulated data are investigated.

3.3 Denoising, Deconvolution, and Decomposition

The likelihood model, describing the measurement process, and the prior assumptions for the
signal fields and the power spectrum of the diffuse component yield a well-defined inference
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problem. The corresponding posterior is given by

P (s, τ ,u|d) =
P (d|s,u) P (s|τ ) P (τ |α, q, σ) P (u|β, η)

P (d)
, (3.23)

which is a complex form of Bayes’ theorem (3.1).
Ideally, we would now calculate the a posteriori expectation values and uncertainties

according to Eqs. (3.2) and (3.3) for the diffuse and point-like signal fields, s and u, as well
as for the logarithmic spectral parameters τ . However, an analytical evaluation of these
expectation values is not possible due to the complexity of the posterior.

The posterior is non-linear in the signal fields and, except for artificially constructed
data, non-convex. It, however, is more flexible and therefore allows for a more comprehensive
description of the parameters to be inferred (Kirkpatrick et al. 1983; Geman & Geman 1984).

Numerical approaches involving Markov chain Monte Carlo methods (Metropolis & Ulam
1949; Metropolis et al. 1953) are possible, but hardly feasible due to the huge parameter phase
space. Nevertheless, similar problems have been addressed by elaborate sampling techniques
(Wandelt et al. 2004; Jasche et al. 2010b; Jasche & Kitaura 2010; Jasche & Wandelt 2013).

Here, two approximative algorithms with lower computational costs are derived. The
first one uses the maximum a posteriori (MAP) approximation, the second one minimizes
the Gibbs free energy of an approximate posterior ansatz in the spirit of variational Bayesian
methods. The fidelity and accuracy of these two algorithms are compared in a numerical
application in Sec. 3.4.

3.3.1 Posterior Maximum

The posterior maximum and mean coincide, if the posterior distribution is symmetric and
single peaked. In practice, this often holds – at least in good approximation –, so that the
maximum a posteriori approach can provide suitable estimators. This can either be achieved
using a δ-distribution at the posterior’s mode,

〈s〉(s|d)

MAP-δ
≈

∫
Ds s δ(s− smode), (3.24)

or using a Gaussian approximation around this point,

〈s〉(s|d)

MAP-G
≈

∫
Ds s G(s− smode,Dmode), (3.25)

Both approximations require us to find the mode, which is done by extremizing the posterior.
Instead of the complex posterior distribution, it is convenient to consider the information

Hamiltonian, defined by its negative logarithm,

H(s, τ ,u|d) = − logP (s, τ ,u|d) (3.26)

= H0 + 1†R (es + eu)− d† log (R (es + eu))

+
1

2
log (det [S]) +

1

2
s†S−1s (3.27)

+ (α− 1)†τ + q†e−τ +
1

2
τ †Tτ

+ (β − 1)†u+ η†e−u,
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where all terms constant in s, τ , and u have been absorbed into a ground state energy H0,
cf. Eqs. (3.7), (3.11), (3.17), and (3.22), respectively.

The MAP solution, which maximizes the posterior, minimizes the Hamiltonian. This
minimum can thus be found by taking the first (functional) derivatives of the Hamiltonian
with respect to s, τ , and u and equating them with zero. Unfortunately, this yields a set of
implicit, self-consistent equations rather than an explicit solution. However, these equations
can be solved by an iterative minimization of the Hamiltonian using a steepest descent method
for example, see Sec. 3.3.4 for details.

In order to better understand the structure of the MAP solution, let us consider the
minimum (s, τ ,u) = (m(s), τ ?,m(u)). The resulting filter formulas for the diffuse and point-
like signal field read

∂H

∂s

∣∣∣∣
min

= 0 = (1− d/l)†R ∗ em
(s)

+ S?−1m(s), (3.28)

∂H

∂u

∣∣∣∣
min

= 0 = (1− d/l)†R ∗ em
(u)

+ β − 1− η ∗ e−m
(u)
, (3.29)

with

l = R
(

em
(s)

+ em
(u)
)
, (3.30)

S? =
∑
k

eτ
?
kSk. (3.31)

Here, ∗ and / denote componentwise multiplication and division, respectively. The first term
in Eq. (3.28) and (3.29), which comes from the likelihood, vanishes in case l = d. Notice that
l = λ|min describes the most likely number of photon counts, not the expected number of
photon counts λ = 〈d〉(d|s,u), cf. Eqs. (3.5) and (3.7). Disregarding the regularization by the
priors, the solution would overfit; i.e., noise features are partly assigned to the signal fields
in order to achieve an unnecessarily closer agreement with the data. However, the a priori
regularization suppresses this tendency to some extend.

The second derivative of the Hamiltonian describes the curvature around the minimum,
and therefore approximates the (inverse) uncertainty covariance,

∂2H

∂s∂s†

∣∣∣∣
min

≈D(s)−1
,

∂2H

∂u∂u†

∣∣∣∣
min

≈D(u)−1
. (3.32)

The closed form of D(s) and D(u) is given explicitly in App. B.2.
The filter formula for the power spectrum, which is derived from a first derivative of the

Hamiltonian with respect to τ , yields

eτ
?

=
q + 1

2

(
tr
[
m(s)m(s)†S−1

k

])
k

γ + Tτ ?
, (3.33)

where γ = (α−1)+ 1
2

(
tr
[
SkSk

−1
])
k
. This formula is in accordance with the results by Enßlin

& Frommert (2011); Oppermann et al. (2012b). It has been shown by the former authors that
such a filter exhibits a perception threshold; i.e., on scales where the signal-response-to-noise
ratio drops below a certain bound the reconstructed signal power becomes vanishingly low.
This threshold can be cured by a better capture of the a posteriori uncertainty structure.
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3.3.2 Posterior Approximation

In order to overcome the analytical infeasibility as well as the perception threshold, we seek an
approximation to the true posterior. Instead of approximating the expectation values of the
posterior, approximate posteriors are investigated in this section. In case the approximation
is good, the expectation values of the approximate posterior should then be close to the real
ones.

The posterior given by Eq. (3.23) is inaccessible due to the entanglement of the dif-
fuse signal field s, its logarithmic power spectrum τ , and the point-like signal field u. The
involvement of τ can been simplified by a mean field approximation,

P (s, τ ,u|d) ≈ Q = Qs(s,u|µ,d) Qτ (τ |µ,d), (3.34)

where µ denotes an abstract “mean field” mediating some information between the signal
field tuple (s,u) and τ that are separated by the product ansatz in Eq. (3.34). This mean
field is fully determined by the problem, as it represents effective (rather than additional)
degrees of freedom. It is only needed implicitly for the derivation, an explicit formula can be
found in App. B.3.3, though.

Since the a posteriori mean estimates for the signal fields and their uncertainty covari-
ances are of primary interest, a Gaussian approximation for Qs that accounts for correlation
between s and u would be sufficient. Hence, our previous approximation is extended by
setting

Qs(s,u|µ,d) = G(ϕ,D), (3.35)

with

ϕ =

(
s−m(s)

u−m(u)

)
, D =

(
D(s) D(su)

D(su)† D(u)

)
. (3.36)

This Gaussian approximation is also a convenient choice in terms of computational complexity
due to its simple analytic structure.

The goodness of the approximation P ≈ Q can be quantified by an information theoretical
measure, see App. B.3.1. The Gibbs free energy of the inference problem,

G =
〈
H(s, τ ,u|d)

〉
Q
−
〈
− logQ(s, τ ,u|d)

〉
Q
, (3.37)

which is equivalent to the Kullback-Leibler divergence DKL(Q,P ), is chosen as such a measure
(Enßlin & Weig 2010).

In favor of comprehensibility, let us suppose the solution for the logarithmic power spec-
trum τ ? is known for the moment. The Gibbs free energy is then calculated by plugging in
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the Hamiltonian, and evaluating the expectation values10,

G = G0 +
〈
H(s,u|d)

〉
Qs
− 1

2
log (det [D]) (3.38)

= G1 + 1†l− d†
{

log(l)−
∞∑
ν=2

(−1)ν

ν

〈
(λ/l− 1)ν

〉
Qs

}

+
1

2
m(s)†S?−1m(s) +

1

2
tr
[
D(s)S?−1

]
(3.39)

+ (β − 1)†m(u) + η†e−m
(u)+

1
2 D̂

(u)

− 1

2
log (det [D]) ,

with

λ = R (es + eu) , (3.40)

l = 〈λ〉Qs = R

(
em

(s)+
1
2 D̂

(s)

+ em
(u)+

1
2 D̂

(u)
)
, (3.41)

S? =
∑
k

eτ
?
kSk, and (3.42)

D̂ = diag [D] . (3.43)

Here, G0 and G1 carry all terms independent of s and u. In comparison to the Hamiltonian
given in Eq. (3.27), there are a number of correction terms that now also consider the uncer-
tainty covariances of the signal estimates properly. For example, the expectation values of the
photon fluxes differ comparing l in Eq. (3.30) and (3.41) where it now describes the expecta-
tion value of λ over the approximate posterior. In case l = λ the explicit sum in Eq. (3.39)
vanishes. Since this sum includes powers of

〈
λν>2

〉
Qs

its evaluation would require all entries
of D to be known explicitly. In order to keep the algorithm computationally feasible, this sum
shall furthermore be neglected. This is equivalent to truncating the corresponding expansion
at second order; i.e., ν = 2. It can be shown that, in consequence of this approximation, the
cross-correlation D(su) equals zero, and D becomes block diagonal.

Without these second order terms, the Gibbs free energy reads

G = G1 + 1†l− d† log(l)

+
1

2
m(s)†S?−1m(s) +

1

2
tr
[
D(s)S?−1

]
(3.44)

+ (β − 1)†m(u) + η†e−m
(u)+

1
2 D̂

(u)

− 1

2
log
(

det
[
D(s)

])
− 1

2
log
(

det
[
D(u)

])
.

10The second likelihood term in Eq. (3.39), d† log(λ), is thereby expanded according to

log(x) = log 〈x〉 −
∞∑
ν=2

(−1)ν

ν

〈(
x

〈x〉 − 1

)ν〉
≈ log 〈x〉+O

(〈
x2
〉)
,

under the assumption x ≈ 〈x〉.
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Minimizing the Gibbs free energy with respect to m(s), m(u), D(s), and D(u) would optimize
the fitness of the posterior approximation P ≈ Q. Filter formulas for the Gibbs solution can
be derived by taking the derivative of G with respect to the approximate mean estimates,

∂G

∂m(s)
= 0 = (1− d/l)†R ∗ em

(s)+
1
2 D̂

(s)

+ S?−1m(s), (3.45)

∂G

∂m(u)
= 0 = (1− d/l)†R ∗ em

(u)+
1
2 D̂

(u)

+ β − 1− η ∗ e−m
(u)+

1
2 D̂

(u)

, (3.46)

This filter formulas again account for the uncertainty of the mean estimates in comparison
to the MAP filter formulas in Eq. (3.28) and (3.29). The uncertainty covariances can be
constructed by either taking the second derivatives,

∂2G

∂m(s)∂m(s)†
≈D(s)−1

,
∂2G

∂m(u)∂m(u)†
≈D(u)−1

, (3.47)

or setting the first derivatives of G with respect to the uncertainty covariances equal to zero
matrices,

∂G

∂D
(s)
xy

= 0,
∂G

∂D
(u)
xy

= 0. (3.48)

The closed form of D(s) and D(u) is given explicitly in App. B.2.
So far, the logarithmic power spectrum τ ?, and with it S?, have been supposed to

be known. The mean field approximation in Eq. (3.34) does not specify the approximate
posterior Qτ (τ |µ,d), but it can be retrieved by variational Bayesian methods (Jordan et al.
1999; Wingate & Weber 2013), according to the procedure detailed in App. B.3.2. The
subsequent App. B.3.3 discusses the derivation of an solution for τ by extremizing Qτ . This
result, which was also derived in Oppermann et al. (2012b), applies to the inference problem
discussed here, yielding

eτ
?

=
q + 1

2

(
tr
[(
m(s)m(s)† +D(s)

)
S−1
k

])
k

γ + Tτ ?
. (3.49)

Again, this solution includes a correction term in comparison to the MAP solution in Eq. (3.33).
Since D(s) is positive definite, it contributes positive to the (logarithmic) power spectrum,
and therefore reduces the possible perception threshold further.

Notice that this is a minimal Gibbs free energy solution that maximizes Qτ . A proper
calculation of 〈τ 〉Qτ might include further correction terms, but their derivation is not possible

in closed form. Moreover, the above used diffuse signal covariance S?−1 should be replaced
by
〈
S−1

〉
Qτ

adding further correction terms to the filter formulas.
In order to keep the computational complexity on a feasible level, all these higher order

corrections are not considered here. The detailed characterization of their implications and
implementation difficulties is left for future investigation.

3.3.3 Physical Flux Solution

To perform calculations on the logarithmic fluxes is convenient for numerical reasons, but it
is the physical fluxes that are actually of interest to us. Given the chosen approximation, we
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can compute the posterior expectation values of the diffuse and point-like photon flux, ρ(s)

and ρ(u), straight forwardly,〈
ρ( · )

〉
P

MAP-δ
≈

〈
ρ( · )

〉
δ

= ρ0em
( · )
mode , (3.50)

MAP-G
≈

〈
ρ( · )

〉
G

= ρ0em
( · )
mode+

1
2 D̂

( · )
mode , (3.51)

Gibbs
≈

〈
ρ( · )

〉
Q

= ρ0em
( · )
mean+

1
2 D̂

( · )
mean , (3.52)

in accordance with Eq. (3.24), (3.25), or (3.34), respectively. Those solutions differ from
each other in terms of the involvement of the posterior’s mode or mean, and in terms of the
inclusion of the uncertainty information, see subscripts.

In general, the mode approximation holds for symmetric, single peaked distributions,
but can perform poorly in other cases (e.g., Enßlin & Frommert 2011). The exact form of
the posterior considered here is highly complex due to the many degrees of freedom. In a
dimensionally reduced frame, however, the posterior appears single peaked and exhibits a
negative skewness.11 Although this is not necessarily generalizable, it suggest a superiority
of the posterior mean compared to the MAP because of the asymmetry of the distribution.
Nevertheless, the MAP approach is computationally cheaper compared to the Gibbs approach
that requires permanent knowledge of the uncertainty covariance.

The uncertainty of the reconstructed photon flux can be approximated as for an ordinary
log-normal distribution,〈

ρ( · )2
〉
P
−
〈
ρ( · )

〉2

P

MAP
≈
〈
ρ( · )

〉2

G

(
eD̂

( · )
mode − 1

)
, (3.53)

Gibbs
≈

〈
ρ( · )

〉2

Q

(
eD̂

( · )
mean − 1

)
, (3.54)

where the square root of the latter term would describe the relative uncertainty.

3.3.4 Imaging Algorithm

The problem of denoising, deconvolving, and decomposing photon observations is a non-trivial
task. Therefore, this section discusses the implementation of the D3PO algorithm given the
two sets of filter formulas derived in Sec. 3.3.1 and 3.3.2, respectively.

The information Hamiltonian, or equivalently the Gibbs free energy, are scalar quantities
defined over a huge phase space of possible field and parameter configurations including,
among others, the elements of m(s) and m(u). If we only consider those, and no resolution
refinement from data to signal space, two numbers need to be inferred from one data value
each. Including τ and the uncertainty covariancesD(s) andD(u) in the inference, the problem
of underdetermined degrees of freedom gets worse. This is reflected in the possibility of a
decent number of local minima in the non-convex manifold landscape of the codomain of the
Hamiltonian, or Gibbs free energy, respectively (Kirkpatrick et al. 1983; Geman & Geman
1984; Giovannelli & Coulais 2005). The complexity of the inference problem goes back to the,
in general, non-linear entanglement between the individual parameters.

11For example, the posterior P (s|d) for a one-dimensional diffuse signal is proportional to exp(− 1
2
s2 + ds−

exp(s)), whereby all other parameters are fixed to unity. Analogously, P (u|d) ∝ exp(du− 2 cosh(u)).
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The D3PO algorithm is based on an iterative optimization scheme, where certain subsets
of the problem are optimized alternately instead of the full problem at once. Each subset
optimization is designed individually, see below. The global optimization cycle is in some
degree sensitive to the starting values due to the non-convexity of the considered potential; i.e.,
the information Hamiltonian or Gibbs free energy, respectively. We can find such appropriate
starting values by solving the inference problem in a reduced frame in advance, see below. So
far, a step-by-step guide of the algorithm looks like the following.

1. Initialize the algorithm with “primitive” starting values; e.g., m
(s)
x = m

(u)
x = 0, D

(s)
xy =

D
(u)
xy = δxy, and τ?k = log(k−2). – Those values are arbitrary. Although the optimiza-

tion is rather insensitive to them, inappropriate values can cripple the algorithm for
numerical reasons because of the high non-linearity of the inference problem.

2. Optimize m(s), the diffuse signal field, coarsely. – The preliminary optimization shall
yield a rough estimate of the diffuse only contribution. This can be achieved by re-
constructing a coarse screened diffuse signal field that only varies on large scales; i.e.,
limiting the bandwidth of the diffuse signal in its harmonic basis. Alternatively, obvious
point sources in the data could be masked out by introducing an artificial mask into
the response, if feasible.

3. Optimize m(u), the point-like signal field, locally. – This initial optimization shall
approximate the brightest, most obvious, point sources that are visible in the data image
by eye. Their current disagreement with the data dominates the considered potential,
and introduces some numerical stiffness. The gradient of the potential can be computed
according to Eq. (3.29) or (3.46), and its minima will be at the expected position of
the brightest point source which has not been reconstructed, yet. It is therefore very
efficient to increase m(u) at this location directly until the sign of the gradient flips, and
repeat this procedure until the obvious point sources are fit.

4. Optimize m(u), the point-like signal field. – This task can be done by a steepest descent
minimization of the potential combined with a line search following the Wolfe conditions
(Nocedal & Wright 2006). The potentials can be computed according to Eq. (3.27) or
(3.39) neglecting terms independent of m(u), and the gradient according to Eq. (3.29)
or (3.46). A more sophisticated minimization scheme, such as a non-linear conjugate
gradient (Shewchuk 1994), is conceivable but would require the application of the full
Hessian, cf. step 5. In the first run, it might be sufficient to restrict the optimization
to the locations identified in step 3.

5. Update D̂
(u)

, the point-like uncertainty variance, in case of a Gibbs approach. – It
is not feasible to compute the full uncertainty covariance D(u) explicitly in order to
extract its diagonal. A more elegant way is to apply a probing technique relying on
the application of D(u) to random fields ξ that project out the diagonal (Hutchinson
1989; Selig et al. 2012). The uncertainty covariance is given as the inverse Hessian by
Eq. (3.32) or (3.47), and should be symmetric and positive definite. For that reason,
it can be applied to a field using a conjugate gradient (Shewchuk 1994); i.e., solving
(D(u))−1y = ξ for y. However, if the current phase space position is far away from
the minimum, the Hessian is not necessarily positive definite. One way to overcome
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this temporal instability, would be to introduce a Levenberg damping in the Hessian
(inspired by Transtrum et al. 2010; Transtrum & Sethna 2012).

6. Optimize m(s), the diffuse signal field. –An analog scheme as in step 4 using steepest
descent and Wolfe conditions is effective. The potentials can be computed according to
Eq. (3.27) or (3.39) neglecting terms independent of m(s), and the gradient according
to Eq. (3.28) or (3.45), respectively. It has proven useful to first ensure a convergence
on large scales; i.e., small harmonic modes k. This can be done repeating steps 6, 7,
and 8 for all k < kmax with growing kmax using the corresponding projections Sk.

7. Update D̂
(s)

, the diffuse uncertainty variance, in case of a Gibbs approach in analogy
to step 5.

8. Optimize τ ?, the logarithmic power spectrum. – This is done by solving Eq. (3.33) or
(3.49). The trace term can be computed analog to the diagonal; e.g., by probing. Given
this, the equation can be solved efficiently by a Newton-Raphson method.

9. Repeat the steps 4 to 8 until convergence. – This scheme will take several cycles until the
algorithm reaches the desired convergence level. Therefore, it is not required to achieve
a convergence to the final accuracy level in all subsets in all cycles. It is advisable to
start with weak convergence criteria in the first loop and increase them gradually.

A few remarks are in order.
The phase space of possible signal field configurations is tremendously huge. It is therefore

impossible to judge if the algorithm has converged to the global or some local minima, but
this does not matter if both yield reasonable results that do not differ substantially.

In general, the converged solution is also subject to the choice of starting values. Solving
a non-convex, non-linear inference problem without proper initialization can easily lead to
nonsensical results, such as fitting (all) diffuse features by point sources. Therefore, the
D3PO algorithm essentially creates its own starting values executing the initial steps 1 to 3.
The “primitive” starting values are thereby processed to rough estimates that cover coarsely
resolved diffuse and prominent point-like features. These estimates serve then as actual
starting values for the optimization cycle.

Because of the iterative optimization scheme starting with the diffuse component in
step 2, the algorithm might be prone to explaining some point-like features by diffuse sources.
Starting with the point-like component instead would give raise to the opposite bias. To avoid
such biases, it is advisable to restart the algorithm partially. To be more precise, we propose
to discard the current reconstruction of m(u) after finishing step 8 for the first time, then
start the second iteration again with step 3, and to discard the current m(s) before step 6.

The above scheme exploits a few numerical techniques, such as probing or Levenberg
damping, that are described in great detail in the given references. The code of our im-
plementation of the D3PO algorithm will be made public in the future under http://www.

mpa-garching.mpg.de/ift/d3po/.

3.4 Numerical Application

Exceeding the simple 1D scenario illustrated in Fig. 3.1, the D3PO algorithm is now applied
to a realistic, but simulated, data set. The data set represents a high energy observation

http://www.mpa-garching.mpg.de/ift/d3po/
http://www.mpa-garching.mpg.de/ift/d3po/
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Illustration of the data and noiseless, but reconvolved, signal responses of the reconstruc-
tions. Panel (a) shows the data from a mock observation of a 32× 32 arcmin2 patch of the sky with a
resolution of 0.1 arcmin corresponding to a total of 102 400 pixels. The data had been convolved with
a Gaussian-like PSF (FWHM ≈ 0.2 arcmin = 2 pixels, finite support of 1.1 arcmin = 11 pixels) and
masked due to an uneven exposure. Panel (b) shows the centered convolution kernel. Panel (c) shows
the exposure mask. The bottom panels show the reconvolved signal response R 〈ρ〉 of a reconstruction
using a different approach each, namely (d) MAP-δ, (e) MAP-G, and (f) Gibbs. All reconstructions
shown here and in the following figures used the same model parameters: α = 1, q = 10−12, σ = 10,
β = 3

2 , and η = 10−4.

with a field of view of 32 × 32 arcmin2 and a resolution of 0.1 arcmin; i.e., the photon count
image comprises 102 400 pixels. The instrument response includes the convolution with a
Gaussian-like PSF with a FWHM of roughly 0.2 arcmin, and an uneven survey mask due to the
inhomogeneous exposure of the virtual instrument. The data image and those characteristics
are shown in Fig. 3.3. In addition, the top panels of Fig. 3.3 show the reproduced signal
responses of the reconstructed (total) photon flux. The reconstructions used the same model
parameters, α = 1, q = 10−12, σ = 10, β = 3

2 , and η = 10−4 in a MAP-δ, MAP-G and a
Gibbs approach, respectively. They all show a very good agreement with the actual data,
and differences are barely visible by eye. Notice that only the quality of denoising is visible,
since the signal response shows the convolved and superimposed signal fields.

The diffuse contribution to the deconvolved photon flux is shown Fig. 3.4 for all three
estimators, cf. Eqs. (3.50) to (3.52). There, all point-like contributions as well as noise and
instrumental effects have been removed presenting a denoised, deconvolved and decomposed
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Illustration of the diffuse reconstruction. The top panels show the denoised and deconvolved
diffuse contribution 〈ρ(s)〉/ρ0 reconstructed using a different approach each, namely (d) MAP-δ, (e)
MAP-G, and (f) Gibbs. The bottom panels (d) to (f) show the difference between the originally
simulated signal and the respective reconstruction.

reconstruction result for the diffuse photon flux. Figure 3.4 also shows the absolute difference
to the original flux. Although the differences in the MAP estimators are insignificant, the
Gibbs solution seems to be slightly better.

In order to have a quantitative statement about the goodness of the reconstruction, we
define a relative residual error ε(s) for the diffuse contribution as follows,

ε(s) =
∣∣∣ρ(s) −

〈
ρ(s)

〉∣∣∣
2

∣∣∣ρ(s)
∣∣∣−1

2
, (3.55)

where | · |2 is the Euclidean L2-norm. For the point-like contribution, however, we have to
consider an error in brightness and position. For this purpose we define,

ε(u) =

∫ N

1
dn

∣∣∣Rn
PSFρ

(u) −Rn
PSF

〈
ρ(u)

〉∣∣∣
2

∣∣∣Rn
PSFρ

(u)
∣∣∣−1

2
, (3.56)

where RPSF is a (normalized) convolution operator, such that RN
PSF becomes the identity

for large N . These errors are listed in Tab. 3.1. When comparing the MAP-δ and MAP-G
approach, the incorporation of uncertainty corrections seems to improve the results slightly.
The full regularization treatment within the Gibbs approach outperforms MAP solutions in
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(a) (b) (c)

(d) = (a)− (b) (e) = (a)− (c)

(f) = |(e)| / (c) (g) (h)

Figure 3.5: Illustration of the reconstruction of the diffuse signal field s = logρ(s) and its uncertainty.
The top panels show diffuse signal fields. Panel (a) shows the original simulation s, panel (b) the

reconstruction m
(s)
mode using a MAP approach, and panel (c) the reconstruction m

(s)
mean using a Gibbs

approach. The panels (d) and (e) show the differences between original and reconstruction. Panel
(f) shows the relative difference. The panels (g) and (h) show the relative uncertainty of the above
reconstructions.

terms of the chosen error measure ε( · ). For a discussion of how such measures can change the
view on certain Bayesian estimators, we refer to the work by Burger & Lucka (2014).

Figure 3.5 illustrates the reconstruction of the diffuse signal field, now in terms of loga-
rithmic flux. The original and the reconstructions agree well, and the strongest deviations are
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Figure 3.6: Illustration of the reconstruction of the logarithmic power spectrum τ . Both panels show
the default power spectrum (black dashed line), and the simulated realization (black dotted line), as
well as the reconstructed power spectra using a MAP (orange solid line), plus second order corrections
(orange dashed line), and a Gibbs approach (blue solid line). Panel (a) shows the reconstruction for
a chosen σ parameter of 10, panel (b) for a σ of 1000.

found in the areas with low amplitudes. With regard to the exponential ansatz in Eq. (3.4),
it is not surprising that the inference on the signal fields is more sensitive to higher values
than to lower ones. For example, a small change in the diffuse signal field, s → (1 ± ε)s,
translates into a factor in the photon flux, ρ(s) → ρ(s)e±εs, that scales exponentially with
the amplitude of the diffuse signal field. The Gibbs solution shows less deviations from the
original signal than the MAP solution. Since the latter lacks the regularization by the uncer-
tainty covariance it exhibits a stronger tendency to overfitting compared to the former. This
includes overestimates in noisy regions with low flux intensities, as well as underestimates at
locations where point-like contributions dominate the total flux.

The reconstruction of the power spectrum, as shown in Fig. 3.6, gives further indications
of the reconstruction quality of the diffuse component. The simulation used a default power
spectrum of

exp(τk) = 42 (k + 1)−7. (3.57)

This power spectrum was on purpose chosen to deviate from a strict power-law supposed by
the smoothness prior.

From Fig. 3.6 it is apparent that the reconstructed power spectra track the original well
up to a harmonic mode k of roughly 0.4 arcmin−1. Beyond that point, the reconstructed power
spectra fall steeply until they hit a lower boundary set by the model parameter q = 10−12.
This drop-off point at 0.4 arcmin−1 corresponds to a physical wavelength of roughly 2.5 arcmin,
and thus (half-phase) fluctuations on a spatial distances below 1.25 arcmin. The Gaussian-like
PSF of the virtual observatory has a finite support of 1.1 arcmin. The lack of reconstructed
power indicates that the algorithm assigns features on spatial scales smaller than the PSF
support preferably to the point-like component. This behavior is reasonable because solely

MAP-δ MAP-G Gibbs

ε(s) = 4.442% ε(s) = 4.441% ε(s) = 2.078%

ε(u) = 1.540% ε(u) = 1.540% ε(u) = 1.089%

Table 3.1: Overview of the relative residual errors of the photon flux reconstructions for the respective
approaches, all using the same model parameters, cf. text.
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Figure 3.7: Illustration of the reconstruction of the point-like signal field u = logρ(u) and its uncer-
tainty. The top panels show the location (markers) and intensity (gray scale) of the point-like photon
fluxes, underlaid is the respective diffuse contribution (contours) to guide the eye, cf. Fig. 3.4. Panel
(a) shows the original simulation, panel (b) the reconstruction using a MAP approach, and panel (c)
the reconstruction using a Gibbs approach. The bottom panels (d) and (e) show the match between
original and reconstruction in absolute and relative fluxes, the 2σ shot noise interval (gray contour),
as well as some reconstruction uncertainty estimate (error bars).

the point-like signal can cause PSF-like shaped imprints in the data image. However, there
is no strict threshold in the distinction between the components on the mere basis of their
spatial extend. We rather observe a continuous transition from assigning flux to the diffuse
component to assigning it to the point-like component while reaching smaller spatial scales
because strict boundaries are blurred out under the consideration of noise effects.

The differences between the reconstruction using a MAP and a Gibbs approach are
subtle. The difference in the reconstruction formulas given by Eqs. (3.33) and (3.49) is an
additive trace term involving D(s), which is positive definite. Therefore, a reconstructed
power spectrum regularized by uncertainty corrections is never below the one with out given
the same m(s). However, the reconstruction of the signal field follows different filter formulas,
respectively. Since the Gibbs approach considers the uncertainty covariance D(s) properly in
each cycle, it can present a more conservative solution. The drop-off point is apparently at
higher k for the MAP approach, leading to higher power on scales between roughly 0.3 and
0.7 arcmin−1. In turn, the MAP solution tends to overfit by absorbing some noise power into
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m(s) as discussed in Sec. 3.3. Thus, the higher MAP power spectrum in Fig. 3.6 seems to be
caused by a higher level of noise remnants in the signal estimate.

The influence of the choice of the model parameter σ is also shown in Fig. 3.6. Neither
a smoothness prior with σ = 10, nor a weak one with σ = 1000 influences the reconstruction
of the power spectrum substantially in this case.12 The latter choice, however, exhibits some
more fluctuations in order to better track the concrete realization.

The results for the reconstruction of the point-like component are illustrated in Fig. 3.7.
Overall, the reconstructed point-like signal field and the corresponding photon flux are in good
agreement with the original ones. The point-sources have been located with an accuracy of
±0.1 arcmin, which is less than the FWHM of the PSF. The localization tends to be more
precise for higher flux values because of the higher signal-to-noise ratio. The reconstructed
intensities match the simulated ones well, although the MAP solution shows a spread that
exceeds the expected shot noise uncertainty interval. This is again an indication of the
overfitting known for MAP solutions. Moreover, neither reconstruction shows a bias towards
higher or lower fluxes.

The uncertainty estimates for the point-like photon flux ρ(u) obtained from D(u) accord-
ing to Eqs. (3.53) and (3.54) are, in general, consistent with the deviations from the original
and the shot noise uncertainty, cf. Fig. 3.7. They show a reasonable scaling being higher for
lower fluxes and vice versa. However, some uncertainties seem to be underestimated. There
are different reasons for this.

On the one hand, the Hessian approximation for D(u) in Eq. (3.32) or (3.47) is in indi-
vidual cases in so far poor as that the curvature of the considered potential does not describe
the uncertainty of the point-like component adequately. The data admittedly constrains the
flux intensity of a point source sufficiently, especially if it is a bright one. However, the rather
narrow dip in the manifold landscape of the considered potential can be asymmetric, and thus
not always well described by the quadratic approximation of Eq. (3.32) or (3.47), respectively.

On the other hand, the approximation leading to vanishing cross-correlation D(su), takes
away the possibility of communicating uncertainties between diffuse and point-like compo-
nents. However, omitting the used simplification or incorporating higher order corrections
would render the algorithm too computationally expensive. The fact that the Gibbs solution,
which takes D(u) into account, shows improvements backs up this argument.

The reconstructions shown in Fig. 3.5 and 3.7 used the model parameters σ = 10, β = 3
2 ,

and η = 10−4. In order to reflect the influence of the choice of σ, β, and η, Tab. B.1 sum-
marizes the results from several reconstructions carried out with varying model parameters.
Accordingly, the best parameters seem to be σ = 10, β = 5

4 , and η = 10−4, although we

caution that the total error is difficile to determine as the residual errors, ε(s) and ε(u), are
defined differently. Although the errors vary significantly, 2–15% for ε(s), we like to stress
that the model parameters were changed drastically, partly even by orders of magnitude.
The impact of the prior clearly exists, but is moderate. Notice that the case of σ → ∞
corresponds to neglecting the smoothness prior completely. The β = 1 case that corresponds
to a logarithmically flat prior on u showed a tendency to fit more noise features by point-like
contributions.

In summary, the D3PO algorithm is capable of denoising, deconvolving and decomposing
photon observations by reconstructing the diffuse and point-like signal field, and the loga-

12For a discussion of further log-normal reconstruction scenarios please refer to the work by Oppermann
et al. (2012b).
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rithmic power spectrum of the former. The reconstruction using MAP and Gibbs approaches
perform flawlessly, except for a little underestimation of the uncertainty of the point-like
component. The MAP approach shows signs of overfitting, but those are not overwhelming.
Considering the simplicity of the MAP approach that goes along with a numerically faster
performance, this shortcoming seems acceptable.

Due to the iterative scheme of the algorithm, a combination of the MAP approach for
the signal fields and a Gibbs approach for the power spectrum is possible.

3.5 Conclusions & Summary

The D3PO algorithm for the denoising, deconvolving and decomposing photon observations
has been derived. It allows for the simultaneous but individual reconstruction of the diffuse
and point-like photon fluxes, as well as the harmonic power spectrum of the diffuse com-
ponent, from a single data image that is exposed to Poissonian shot noise and effects of
the instrument response functions. Moreover, the D3PO algorithm can provide a posteriori
uncertainty information on the reconstructed signal fields. With these capabilities, D3PO
surpasses previous approaches that address only subsets of these complications.

The theoretical foundation is a hierarchical Bayesian parameter model embedded in the
framework of IFT. The model comprises a priori assumptions for the signal fields that ac-
count for the different statistics and correlations of the morphologically different components.
The diffuse photon flux is assumed to obey multivariate log-normal statistics, where the co-
variance is described by a power spectrum. The power spectrum is a priori unknown and
reconstructed from the data along with the signal. Therefore, hyperpriors on the (logarithmic)
power spectra have been introduced, including a spectral smoothness prior (Enßlin & From-
mert 2011; Oppermann et al. 2012b). The point-like photon flux, in contrast, is assumed
to factorize spatially in independent inverse-Gamma distributions implying a (regularized)
power-law behavior of the amplitudes of the flux.

An adequate description of the noise properties in terms of a likelihood, here a Poisson
distribution, and the incorporation of all instrumental effects into the response operator ren-
ders the denoising and deconvolution task possible. The strength of the proposed approach is
the performance of the additional decomposition task, which especially exploits the a priori
description of “diffuse” and “point-like”. The model comes down to five scalar parameters,
for which all a priori defaults can be motivated, and of which none is driving the inference
predominantly.

We discussed maximum a posteriori (MAP) and Gibbs free energy approaches to solve
the inference problem. The derived solutions provide optimal estimators that, in the con-
sidered examples, yielded equivalently excellent results. The Gibbs solution slightly outper-
forms MAP solutions (in terms of the considered L2-residuals) due to the full regularization
treatment, however, for the price of a computationally more expensive optimization. Which
approach is to be preferred in general might depend on the concrete problem at hand and the
trade-off between reconstruction precision against computational effort.

The performance of the D3PO algorithm has been demonstrated in realistic simulations
carried out in 1D and 2D. The implementation relies on the NIFTy package (Selig et al.
2013), which allows for the application regardless of the underlying position space.

In the 2D application example, a high energy observation of a 32 × 32 arcmin2 patch
of a simulated sky with a 0.1 arcmin resolution has been analyzed. The D3PO algorithm



3.5 Conclusions & Summary 73

successfully denoised, deconvolved and decomposed the data image. The analysis yielded a
detailed reconstruction of the diffuse photon flux and its logarithmic power spectrum, the
precise localization of the point sources and accurate determination of their flux intensities,
as well as a posteriori estimates of the reconstructed fields.

The D3PO algorithm should be applicable to a wide range of inference problems ap-
pearing in astronomical imaging and related fields. Concrete applications in high energy
astrophysics, for example, the analysis of data from the Chandra X-ray observatory or the
Fermi γ-ray space telescope, are currently considered by the authors. In this regard, the
public release of the D3PO code is planned.
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Chapter 4

The Denoised, Deconvolved, and
Decomposed Fermi γ-ray Sky
An Application of the D3PO Algorithm

Note : This chapter, as well as App. C, has been submitted for publication in Astronomy & As-
trophysics (Selig et al. 2014).

4.1 Introduction

Since August 2008 the Fermi Gamma-ray Space Telescope has observed the γ-ray sky with
its main instrument, the Large Area Telescope (LAT) (Atwood et al. 2009), which is sensitive
to photons with energies ranging from around 20 MeV to above 300 GeV.

There is a diversity of astrophysical contributions to the total γ-ray flux. Most of the
photons in the GeV-range are induced by cosmic rays (CRs), charged particles moving at
(ultra-)relativistic speeds, through hadronic interactions of CR nuclei with the interstellar
medium (ISM) or inverse Compton scattering (IC) of electrons with background light (Ack-
ermann et al. 2012d; Dermer et al. 2013). In addition, there is emission from an isotropic
diffuse background, which is commonly denoted as “extragalactic” background (Dermer 2007,
and references therein), and from sources that appear point-like.

The diffuse and point-like γ-ray fluxes appear superimposed to an observer. An observa-
tion through an instrument, like the Fermi LAT for example, additionally convolves the total
flux with the instrument response functions (IRFs). The gathered data are, lastly, subject
to noise; i.e., Poissonian shot noise in the case of integer photon counts. In order to retrieve
the physical photon flux from observations, we would need to reverse those processes. Unfor-
tunately, neither a direct inversion of the convolution nor the separation of noise and signal
components is feasible exactly, so that we have to resort to alternative approaches.

One possibility is “forward” modeling, whereby parametrized models of different emission
components are fit to the data; e.g., by a maximum-likelihood procedure as suggested by
Ackermann et al. (2008) for the analysis of Fermi LAT data. By inspection of residuals
between the data and the best fitting model(s), new features might be discovered. A famous
example are the Giant Fermi Bubbles revealed by Su et al. (2010) using templates. Such
templates are commonly constructed in accordance with surveys at lower energies or by
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modeling of the relevant CR physics (Ackermann et al. 2008; Su et al. 2010; Su & Finkbeiner
2012; Ackermann et al. 2012d, 2014b, and references therein).

In this work, we investigate the “backward” reconstruction of flux contributions using
Bayesian inference methods (Bayes 1763; Cox 1946; Shannon 1948; Wiener 1949). The idea is
to obtain signal estimates (and uncertainties) from a probabilistic model that denoises, decon-
volves, and decomposes the input data. This probabilistic model includes prior constraints to
remedy the complexity of the inverse problem. Assuming a sparsity based regularization, for
example, Schmitt et al. (2010, 2012) proposed an analysis strategy using waveforms, which
they applied to simulated Fermi data. For the analysis of X-ray images, which pose the same
challenges as γ-ray images, a Bayesian background-source separation technique was proposed
by Guglielmetti et al. (2009).

We deploy the D3PO inference algorithm (Selig & Enßlin 2013) derived within the frame-
work of information field theory (IFT) (Enßlin et al. 2009; Enßlin 2013, 2014). It simultane-
ously provides non-parametric estimates for the diffuse and the point-like photon flux given
a photon count map. This challenging inverse problem is thereby regularized by prior as-
sumptions that provide a statistical description of the morphologically different components;
i.e., the priors define our naive understanding of “diffuse” and “point-like”. D3PO considers
Poissonian shot noise, without Gaussian approximations, and takes the provided IRFs of the
Fermi LAT fully into account. Furthermore, we can retrieve uncertainty information on the
estimates.

All this allows us to present a continuous reconstruction of the diffuse γ-ray sky up to
around 300 GeV, as well as an estimate of the point-like contribution, from which we derive a
preliminary source catalog. By analyzing the spectral behavior of the diffuse component, it is
possible to investigate the underlying processes, especially with regard to the CRs responsible
for the emission.

The remainder of this chapter is structured as follows. Sec. 4.2 summarizes the analysis
procedure, a more detailed description is gven in App. C.1. We present and discuss our
findings in Sec. 4.3, and conclude in Sec. 4.4.

band Emin [GeV] Emid [GeV] Emax [GeV]

1 0.60 0.85 1.20
2 1.20 1.70 2.40
3 2.40 3.40 4.80
4 4.80 6.79 9.60
5 9.60 13.58 19.20
6 19.20 27.15 38.40
7 38.40 54.31 76.80
8 76.80 108.61 153.60
9 153.60 217.22 307.20

Table 4.1: Overview of the energy binning. Listed are minimum, logarithmic mean, and maximum
energy for each band.
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4.2 Analysis Summary

We analyze the photon count data collected by the Fermi LAT within its 5.5 years of operation.
All data selection criteria, the working principle of the applied D3PO inference algorithm
(Selig & Enßlin 2013), and a description of the analysis procedure are detailed in App. C.1.

In summary, we make use of the reprocessed Pass 7 available within the Fermi Science
Tools in order to retrieve the data, as well as the corresponding instrument response func-
tions and exposure of the Fermi LAT (Atwood et al. 2009; Abdo et al. 2009; Ackermann et al.
2012a). We consider nine logarithmically spaced energy bands ranging from 0.6 to 307.2 GeV,
cf. Tab. 4.1. For each band, we spatially bin all events classified as CLEAN in count maps,
whereby we distinguish the front or back conversion of the photon within the LAT. Through-
out this work, we discretize the sky using the HEALPix scheme with nside = 128, which
corresponds to an angular resolution of approximately 0.46◦.

This data set is the input for the D3PO algorithm. In order to denoise, deconvolve and
decompose the data, we suppose the data d to be the result of a Poisson process with an
expectation value given by the convolved sum of the diffuse and point-like flux, φ(s) and φ(u);
i.e.,

dx P(d|R(φ(s) + φ(u))), (4.1)

where the operator R describes the full instrument response of the LAT. Under this model
assumption, and with the aid of prior regularizations, D3PO computes estimates for the
photon fluxes. The inference is performed iteratively until convergence and for each energy
band separately. Further details regarding the inference can be found in App. C.1.

The results of this analysis – including, among others, the reconstructed fluxes, uncer-
tainties, and the preliminary D3PO Fermi (pDF) catalog of source candidates – are publicly
available at http://www.mpa-garching.mpg.de/ift/fermi/.

4.3 Results & Discussion

4.3.1 The γ-ray Sky

The Fermi LAT has detected millions of γ-ray photons within the first 5.5 years of its mission.
We can stack them in a binned all-sky count map disregarding the energy of the photons.

Figure 4.1 shows such all-sky maps for the stacked data and the result of the reconstruc-
tion. D3PO denoises, deconvolves, and decomposes photon count maps yielding a reconstruc-
tion of the diffuse and point-like photon flux. A reconvolution of the reconstructed γ-ray flux
with the instrument response functions demonstrates the quality of the performed denoising;
i.e., the removal of Poissonian shot noise.

The fractional residual exhibits no significant structures and the mean of its absolute
value is below 6%.1 As we compare the data with a denoised reproduction, the major differ-
ence is due to shot noise. We observe a weak ringing around the Galactic plane, which is a

1If we approximate the Poissonian P(d|λ) by a Gaussian G with mean λ and variance diag[λ], we can
expect the mean of the absolute fractional residual to be

1
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≈ 1
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For the considered data set, this computes to around 10%.

http://www.mpa-garching.mpg.de/ift/fermi/
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(a) (b)

(c) (d) = (a)/(b)− 1

Figure 4.1: Illustration of the γ-ray sky seen by the Fermi LAT in Mollweide projection. Panel
(a) shows the photon count data of 5.5 years mission elapsed time in the energy range from 0.6 to
307.2 GeV. Panel (b) shows the reconstructed (total) photon flux reconvolved with the LAT’s IRFs.
Panel (c) shows only the reconvolved diffuse contribution. Panel (d) shows the fractional residual map
smoothed with a 0.5◦ Gaussian kernel.

numerical artifact due to imperfections of spherical harmonic transformations applied during
the inference. Previous comparisons with best fitting templates created by the GALPROP
code (Moskalenko & Strong 2000; Strong et al. 2000; Ackermann et al. 2008, 2012d, and ref-
erences therein) often show significant residuals indicating features lacked by the respective
models; e.g., cf. Fig. 6 in Ackermann et al. (2012d). Since our inference machinery, on the
contrary, is free of a priori assumption regarding the existence of any Galactic or extragalactic
features, significant residuals are not to be expected.

Excluding the point-like contribution to the reconvolved count map, the diffuse γ-ray
sky becomes fully revealed, see Fig. 4.1c. The diffuse count map clearly displays Galactic
features and substructures within the ISM. While the reconvolved photon count image appears
somewhat smoothed, its deconvolved counterpart displays the Milky Way in more detail. The
diffuse γ-ray fluxes in the individual energy bands are shown in Fig. 4.2. The coarseness of the
images increases with energy because the number of detected photons, and thus the signal-
to-noise ratio, drops drastically. The uncertainties of the reconstructions are illustrated in
Fig. 4.3. Nevertheless, the Galactic disk and bulge are clearly visible at all energies.

Pseudocolor Images

In order to obtain a better view on the spectral characteristics of the γ-ray sky, we combine
the maps at different energies by a pseudocolor scheme. This scheme is designed to mimic
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Illustration of the diffuse γ-ray flux on a logarithmic scale at different energies in Mollweide
projection. The panels show the reconstructed diffuse photon flux for energy bands 1–9, cf. Tab. 4.1.
The photon flux is given in units of GeV−1cm−2s−1sr−1. Notice that the color scale varies.

(a) (b) (c)

Figure 4.3: Illustration of the relative reconstruction uncertainty on a logarithmic scale at different
energies in Mollweide projection. The panels show the relative uncertainty on the reconstructed diffuse
photon flux at ∼ 2 GeV, ∼ 8 GeV, ∼ 100 GeV corresponding to panels (b), (d), and (h) in Fig. 4.2.
The uncertainties for all energy bands are contained in the online material.

the human perception of optical light in the γ-ray range. Intensity indicates the (logarithmic)
brightness of the flux, and red colors correspond to low energy γ-rays around 1 GeV and
blue colors to γ-rays up to 300 GeV. The resulting pseudocolor maps of the γ-ray sky are
presented in Fig. 4.4. Thanks to a suitably tuned color response, spectrally different regions
can easily be identified by the human eye. At a first glance, we can recognize the bright
bulge of the Milky Way, the Fermi bubbles as two greenish blue, roundish areas, and red
to yellowish cloud-like structures at low and intermediate latitudes, in particular around the
Galactic anticenter.

The upper panels (a–d) illustrate the functionality of the D3PO inference algorithm show-
ing the raw data and the denoised, deconvolved, and decomposed reconstruction, respectively.
The denoising applies most strongly to the high energy bands, appearing green- to blueish,
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where the signal-to-noise ratios are worst. The deconvolution effect is most evident for point-
like contributions in lower energy bands, appearing reddish, because of the increasing width
of the point spread function (PSF) for these bands. Finally, the decomposition reveals the
purely diffuse γ-ray sky.

This view reveals many interesting features beyond the Galactic disk and bulge, which
we will discuss in the following.

Bubbles, Features, and Radio

The most striking features recovered by our reconstruction are the Giant Fermi Bubbles first
found by Su et al. (2010). The bubbles extend up to |b| . 50◦ in latitude and |l| . 20◦

in longitude. They appear to emerge from the Galactic center, however, their astrophysical
origin is still under discussion (Su et al. 2010; Cheng et al. 2011; Dogiel et al. 2011; Su
& Finkbeiner 2012; Yang et al. 2014; Ackermann et al. 2014b, and references therein). In
agreement with previous studies, we find the bubbles to have relatively sharp edges and an
overall homogeneous surface brightness, appearing greenish blue in Fig. 4.4. Yang et al. (2014)
report an energy dependent morphology of the southern bubble, which is, in particular, more
extended to the Galactic south and west at high energies. Our results confirm this extension,
as can be seen in the reconstruction for the highest energy band in Fig. 4.2.

Figure 4.4 also shows the North Arc, Donut and Cocoon (Su et al. 2010; Su & Finkbeiner
2012). However, we do not find evidence for a jet-like structure as reported by Su & Finkbeiner
(2012).

Moreover, there is a correlation with structures seen at radio frequencies. For example,
a comparison with the synchrotron map from Haslam et al. (1982) taken at 408 MHz reveals
γ-ray counter parts of the Radio Loop I (Large et al. 1962) and smaller objects like the Large
Magellanic Cloud at (l, b) ≈ (−80◦,−30◦), as well as the γ-ray glow around Centaurus A
at (l, b) ≈ (−50◦, 20◦). However, the resolution of the all-sky reconstruction is too coarse to
detail the morphology of such small sources. A reconstruction of a more focused field of view
would be necessary to that end.

4.3.2 Energy Spectra & Spectral Indices

In order to get a more quantitative view on the different contributions to the γ-ray flux, we
now investigate photon flux energy spectra.

Figure 4.5 shows the measured2 and reconstructed energy spectra in four different regions
of interest (ROI) specified in Tab. 4.2. The ROIs are typical areas in- or excluding the
Galactic center or bulge. The errors are dominated by systematics; i.e., by the uncertainty
in the absolute energy scale ∆E/E = (+2%,−5%) (Ackermann et al. 2012c) and in the
normalization of the effective area, which is ±10% up to 100 GeV and increases linearly with
log(E) to ±15% at 1 TeV (Bregeon et al. 2013)3. The statistical uncertainties determined

2The photon data d can be converted into flux units by division by the respective exposure ε, solid angle
Ω, and width of the energy band, according to

φj = φ(Emid
j ) ≡ 1

(Emax
j − Emin

j )

∑
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1
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(
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ij
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ij
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ij
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)
,

where the indices i and j label pixels and energy bands, respectively. Notice that front and back converted
data are averaged accordingly.

3See also http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html.

http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html
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(a) (b) (c)

(d)

(e) (f)

Figure 4.4: Illustration of the γ-ray sky in pseudocolor in Mollweide projection. Panel (a) shows
the 5.5 year data. The panels (b) and (c) show the reconstructed (total) photon flux that in (b) is
reconvolved with the IRFs. Panel (d) shows the reconstructed diffuse photon flux. The panels (e) and
(f) reproduce the latter but are overlaid with the feature contours found by Su et al. (2010) (white:
Giant Fermi Bubbles, light magenta: Donut, light blue: North Arc, light gray: Radio Loop I ) and
contours of the 408 MHz radio map from Haslam et al. (1982), respectively.

from the inference are shown in Fig. 4.3, and tend to track the signal-to-noise ratio.

We split the total energy spectrum into a diffuse and a point-like contribution, whereby
we additionally distinguish between isotropic4 and anisotropic diffuse components. Overall,
the spectra from the reconstructed fluxes agree well with the data, except for the highest
energy bin, where the point-like component seems to be strongly overestimated. There are
two reasons for this. On the one hand, the signal-to-noise ratio is lowest, and on the other

4In this context, “isotropic” means spatially constant.
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ROI inclusion cuts Ω [sr] γ(s) χ2/DOF γ
(s)
iso χ2

iso/DOF

1 all-sky 4π 2.52± 0.05 0.10 2.59± 0.05 0.15
2 |b| > 10◦ ∨ |l| < 10◦ 10.5 2.50± 0.05 0.12 2.59± 0.05 0.15
3 |b| > 10◦ 10.4 2.50± 0.05 0.14 2.59± 0.05 0.15
4 |b| < 10◦ ∧ |l| < 80◦ 4.5 2.51± 0.05 0.13 2.56± 0.05 0.15

Table 4.2: Overview of the regions of interest. Listed are inclusion cuts in Galactic longitude l and
latitude b, covered solid angle Ω, fitted spectral indices γ(s), and χ2 divided by the degrees of freedom
(DOF); i.e., 9 bands - 2 unknowns = 7. The latter two are given for the anisotropic and the isotropic
diffuse photon flux, respectively.

hand, the PSF is sharpest. Therefore, the distinction between point-like sources, noise peaks,
and weak diffuse emission breaks down.

The diffuse γ-ray flux amounts to ∼ 90% of the total flux with the majority being
anisotropic contributions of Galactic origin. Both diffuse contributions, isotropic and anisotropic,
are consistent with featureless power-laws, φ ∝ E−γ . The results of the power-law fits are
given in Tab. 4.2.

For the anisotropic component we find a spectral index γ(s) = 2.50 ± 0.05, which is in
agreement with the index of 2.44± 0.01 reported by Ackermann et al. (2012b). In low energy
bands, the spectrum is dominated by the production and decay of π0-mesons induced by CR
protons, while IC emission becomes increasingly important at the highest energies (Acker-
mann et al. 2012b,d). The declining tail of the pion bump, peaking at 1

2mπ0 ≈ 0.07 GeV c−2,
is visible.

The isotropic background is often referred to as “extragalactic” because it comprises un-
resolved extragalactic sources and might include possible signatures from large-scale structure
formation or dark matter decay (Dermer 2007; Abdo et al. 2010b, and references therein).
The isotropic diffuse background also follows a featureless power-law with a spectral index

γ
(s)
iso = 2.59 ± 0.05. Notice that the excess of isotropic emission around ∼ 14 GeV is rather

insignificant with regard to the uncertainties.5 Abdo et al. (2010b) derive a spectral index of
2.41± 0.05 from 1 year Fermi LAT data in the energy range of 0.03–100 GeV. This indicates
a slight spectral softening of the isotropic background towards higher energies. In the same
energy range, observations with the Energetic Gamma Ray Experiment Telescope (EGRET)
yield a spectral index of 2.10±0.03 that is considerably smaller (Sreekumar et al. 1998). This
discrepancy, which might be an instrumental issue, is not yet clarified.

The recent analysis by Ackermann et al. (2014a) investigating an energy range of 0.1–
820 GeV reports the isotropic γ-ray background to be consistent with a power-law with ex-
ponential cut-off at 280 GeV having a spectral index of 2.32± 0.02.

If we consider smaller ROIs, we find fluctuations in the spectral index of the diffuse γ-ray
flux. These fluctuations could give some indication about the CR spectrum, the composition
of the local ISM, etc.

Since the D3PO algorithm provides a continuous estimate of the diffuse photon flux, we
can perform a spectral analysis in individual pixels. Although the energy spectra vary with
location, we, for simplicity, assume a general power-law behavior everywhere, but with varying
spectral index. Figure 4.6 shows the obtained spectral index map for the anisotropic γ-ray

5Such a tentative excess could be a line-like signal from dark matter decay/annihilation (Conrad 2012),
however, this is highly speculative considering the available data.
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(d) ROI: |b| < 10◦ ∧ |l| < 80◦

Figure 4.5: Illustration of energy spectra considering different ROIs. The legend in panel (c) applies
to all other panels. Shown are the data (green squares) converted to flux units, and spectra from
the reconstructed total (gray), anisotropic diffuse (dashed orange), isotropic diffuse (dotted magenta),
and point-like photon flux (blue circles). Furthermore, power-law fits for the anisotropic (thick solid
orange) and isotropic emission (thick dash-dotted magenta) are shown. The errors include statistical
and systematic uncertainties and are only shown for data and diffuse contributions for reasons of
clarity.

sky, centered on the average index of 2.5. The spatial smoothness of the spectral index map
reflects that there are no discontinuities between neighboring pixels in the reconstructions.

From this spectral index map it is apparent that the Galactic disk is spectrally softer
compared to the all-sky average. The same holds for the extensive structures that trace
interstellar gas. These regions are dominated by hadronic interactions releasing γ-ray photons;
e.g. π0 production and decay (cf. e.g., Ackermann et al. 2012d)

In the region overlapping with the Giant Fermi Bubbles we find overall similar spectra
that are, however, harder in contrast to the all-sky average. This is in agreement with
the results of Ackermann et al. (2014b), although they found a log-parabola to fit best.
The strong hardening towards the high latitude edge of the southern bubble comes from
its increased spatial extent compared to lower energies, cf. Yang et al. (2014). Further
local spots inside the bubble region appear insignificant within the statistical and systematic
uncertainties. Although the morphology and spectra of the bubbles can be explained with
hadronic and leptonic CR processes, IC scenarios give the preference of also reproducing the
microwave haze observed with WMAP and Planck (Planck Collaboration 2013b; Yang et al.
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Figure 4.6: Illustration of the spectral indices of featureless power-law-fits, φaniso ∝ E−γ , at all
positions in the sky using energy bands 1–8.

2013; Ackermann et al. 2014b). Furthermore, the low target densities at higher Galactic
latitudes render the hadronic scenario as not very compelling.

4.3.3 Diffuse Emission Components

The pseudocolor scheme introduced in Sec. 4.3.1 already allows us to visually inspect the
continuous reconstruction of the diffuse γ-ray sky. By eye, we can make out the Galactic
bulge, the Fermi bubbles, and also cloudy structures around the Galactic anticenter.

In order to confirm this impression the visualization gives, we retrieve energy spectra
from three characteristic regions: “bulge”-like (|l| < 40◦, |b| < 1.5◦), “cloud”-like (−150◦ <
l < −120◦, |b| < 3◦), and “bubble”-like (for which we select the southern bubble up to latitudes
b < −27.5◦). The contours of those regions are shown in Fig. 4.7a.

Figure 4.8a shows the energy spectra retrieved from the three regions. The “cloud”-like
spectrum is rather soft (γ(s) ≈ 2.6) and features the tail of the pion bump. It is not surprising
that the “cloud”-like spectrum is dominated by emission from π0 decay, because the cloudy
structures trace the gas content of the ISM that provides the target protons for π0 production.
The “bubble”-like spectrum is significantly harder (γ(s) ≈ 2.4) indicating the dominance of
hard processes like IC emission. The “bulge”-like region exhibits a spectrum that, besides
having a higher absolute scale, can be described as a linear combination of the former two
spectra, cf. Fig. 4.8a.

As the “bulge”-like spectrum is found to be a linear combination of “cloud”- and “bubble”-
like, we can try to decompose the whole diffuse sky into those two components. For this pur-
pose, we fit the spectrum in individual pixels by the “cloud”-, and “bubble”-like component.6

The fit coefficients then indicate the strength of the “cloud”- or “bubble”-like contribution
at all locations. Multiplying the fit coefficients with the respective spectra, we obtain a
pseudocolor visualization of the “cloud”- or “bubble”-like emission components as shown in
Fig. 4.7.

In spite of the simplicity of this two component model, we find a good agreement be-
tween the total diffuse emission and the sum of the two components. The relative residuals
are around 5–19%, except for the highest energy band that was excluded from the fitting pro-
cedure, where the error is approximately 35%. Our findings demonstrate that the γ-ray sky

6In case the fit suggests a negative coefficient for one component, the fitting procedure is repeated ignoring
this component. In this way, we ensure the positivity of the components.
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(a) (b)

(c) (d)

Figure 4.7: Illustration of the γ-ray sky in pseudocolor in Mollweide projection. Panel (a) reproduces
Fig. 4.4d and highlights the contours defining the “bulge”-, “cloud”-, and “bubble”-like region. Panel
(b) shows the linear fit of the latter two to the total diffuse flux. The Panels (c) and (d) show the
“cloud”- and “bubble”-like diffuse components.
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Figure 4.8: Illustration of “cloud”-, and “bubble”-like component. Panel (a) shows energy spectra
from ROIs defined in Fig. 4.7a, cf. text. In addition to the spectra retrieved from the different regions,
a linear combination of the “cloud”-, and “bubble”-like is fit to the “bulge”-like component, cf. legend.
Panel (b) shows the normalized latitude profiles of the “cloud”-, and “bubble”-like component.

in the energy range from 0.6 to 307.2 GeV can with high precision be described by “cloud”-
and “bubble”-like emission components only.

From the shape of the energy spectrum of the “cloud”-like component, we deduced that
it is dominated by hadronic processes. We can also compare its morphology with other
ISM tracers. For this, we compute the brightness of the “cloud”-like component and show
it in Fig. 4.9a. The resulting map agrees with the thermal dust emission seen by Planck
(Planck Collaboration 2013a) at 353 GHz shown in Fig. 4.9b. We like to stress how similar
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the morphology of thermal dust microwave/IR emission and the “cloud”-like γ-ray component
are. In particular in the cloudy region in the Galactic east, the structures agree well, although
we took the spectrum from a region in the west. As the thermal dust emission traces the
ISM, and hence the target gas for the CR protons, we are confident that the “cloud”-like
component is indeed dominated by hadronic emission processes.

The Chamaeleon complex, around (l, b) ∼ (−60◦,−20◦), hosting a number of star forming
clouds is visible in the “cloud”-like component, cf. Fig. 4.11a. Recent work by the Planck
Collaboration (2014) used γ-, radio- and dust data to map the local gas content of the clouds.

The “cloud”-like component is, however, morphologically not exactly identical to the dust
emission. For example, in the latitude profile shown in Fig. 4.10, the dust-to-gamma ratio
decreases with increasing latitude. This profile was computed including only pixels outside the
bubble region (|l| > 30◦), where both, the “cloud”- and “bubble”-like component, contribute,
and the estimated Planck dust emission is positive. The dust seems to be preferentially in
the Galactic disk compared to the thermal gas traced by γ-rays.

The morphology of the “bubble”-like component is very different, cf. Fig. 4.7. Since
the spectrum of the Fermi bubbles is spatially relatively constant, the shape of the northern
bubble is well recovered based on the spectrum of the southern one. We also find an excess in
the “bubble”-like emission in the bulge region, as well as in the star forming region Cygnus-

(a) (b) (c)

Figure 4.9: Illustration of the brightness in Mollweide view. Panel (a) shows the integrated brightness
of the “cloud”-like component. Panel (b) shows the monochromatic brightness of thermal dust emission
at 353 GHz (Planck Collaboration 2013a). Panel (c) shows in white the area included in computing
the latitude profile in Fig. 4.10.
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Figure 4.10: Illustration of the latitude profile of the dust-to-“cloud”-like-gamma ratio. Thermal dust
emission from Planck Collaboration (2013a); Finkbeiner et al. (1999) has been smoothed with a 0.7◦

Gaussian kernel to match the coarseness of the γ-ray map.
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(a) (b) (c)

Figure 4.11: Panel (a) shows a magnification of the Chamaeleon complex from Fig. 4.7c. Panel (b) and
(c) show magnifications of tentative outflows from Fig. 4.7d. The light gray line marks the Galactic
plane (l = 0◦).

X around (l, b) ∼ (80◦, 0◦). Excess of emission following the “bubble”-like spectrum is also
visible at intermediate latitudes exhibiting mushroom-like shapes typical for hot outflows; e.g.,
south of the Cygnus-X region along (l, b) ∼ (90◦, < −15◦), or along (l, b) ∼ (130◦, < −15◦),
cf. Fig. 4.11b and c. Those are likely candidates for outflows from active star forming regions
of the Milky Way. Furthermore, the latitude profile shown in Fig. 4.8b indicates that the
“bubble”-like disk is roughly twice as thick as the “cloud”-like component.

Since the “bubble”-like γ-ray emission is morphologically so distinct, and sets itself apart
from the “cloud”-like component, we suppose that the two components are dominated by dif-
ferent emission processes. The “bubble”-like spectrum is distinctly harder and less structured,
therefore a leptonic emission process, in particular IC scattering, seems more convincing in
causing the “bubble”-like diffuse component.

The CR populations producing these two γ-ray emission components need not to be very
different. It might be that we are just seeing two different phases of the ISM:

• a cold and condensed one that carries most of the Galactic dust and has a sufficient
nuclei target density to be predominately revealed through hadronic interactions with
CR protons. Hence, the resulting γ-ray emission mostly traces the highly structured gas
distribution.

• a hot, dilute, and voluminous one that tends to flow out of the Galactic disc. The γ-
ray emission from within is dominated by IC upscattering of the Galactic photon field
by CR electrons. As the photon field is relatively homogeneous, the morphology of the
“bubble”-like component is probably shaped by the spatial distribution of the CRs.

This simple two component model of the diffuse γ-ray emission supports scenarios in which
the Fermi bubbles are just outflows of the hot ISM (Yang et al. 2013; Cheng et al. 2011;
Dogiel et al. 2011; Chernyshov 2011; Carretti et al. 2013).

4.3.4 Angular Power Spectra

Under the assumption of statistical isotropy and homogeneity the second moments of a diffuse
signal field are defined by its angular power spectrum. Studying power spectra gives some
indication of the strength of typical fluctuations on respective angular scales described by the
angular quantum number `. According to our chosen HEALPix discretization, we examine
spectra up to a maximum scale set by `max = 2nside = 256.

Figure 4.12 shows the angular power spectra of the diffuse photon flux φ(s) – the quantity
we are interested in – and its logarithm, the diffuse signal field s. The power spectrum, which
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Figure 4.12: Illustration of angular power spectra over angular quantum number `. Panel (a) shows

the spectra of the diffuse photon flux φ(s) in each energy band and power-law fits thereof, cf. legend.
Panel (b) shows the direct realization spectra of the diffuse signal, as well as the inferred, fitted and
averaged spectra, cf. legend. The colors (from red over violet to blue) indicate energy (from band 1 to
9) in both panels, and a white noise spectrum with arbitrary normalization is included for comparison.

is a priori unknown, needs to be reconstructed from the data alongside the diffuse signal field
(Wandelt et al. 2004; Jasche et al. 2010b; Enßlin & Frommert 2011; Oppermann et al. 2012b;
Jasche & Wandelt 2013). This is done for each energy band separately. Further details on
the inference procedure can be found in App. C.1.

The inferred power spectra of s show similar power-law behavior at all energies with some
remarkable deviations. On large scales, 0 < ` . 28, the spectra exhibit a strong distinction
between even and odd `-modes. The reason for this is the dominant contribution of the
Galactic disk centered around b = 0◦ to the diffuse photon flux, which excites/suppresses
even/odd `-modes in the reconstruction. On smaller scales, on the other hand, the power
spectra start to fall off because small-scale features cannot be resolved due to the finite
exposure of the Fermi LAT. This effect has a clear energy dependence. Since events with
higher energies are more rare, the decline of spectra from high energy bands begins at lower
`. Notice that the threshold set by the PSF is on very small scales; e.g., the 68% angular
containment radius above 10 GeV is smaller than 0.2◦ corresponding to ` & 900.

Let us now consider the actual angular power spectrum C` of the diffuse photon flux
φ(s) ∝ exp(s). This can be computed by transforming7 the inferred (final) power spectra of
s according to Greiner & Enßlin (2013). This transformation shifts power between different
`-modes, in particular towards smaller scales (larger `). Again, we find a power-law behavior
of the angular power spectrum, as can be seen in Fig. 4.12a. We fit a broken power-law with

indices γ
(s)
`1 = 2.45± 0.01 and γ

(s)
`2 = 9.73± 0.16. The break point, though, is subject to the

selected energy bands, and should shift to higher ` with increasing observation time.

4.3.5 Point Sources

Another result of our analysis of the 5.5 year Fermi data is a reconstruction of the point-
like contribution to the photon flux, φ(u), which consists of Galactic and extragalactic point
sources.

Figure 4.13 shows an all-sky map of all point source candidates in the pseudocolor scheme
introduced in Sec. 4.3.1. Markers (and their opacity) in the map indicate the position (and

7Here, we disregard the respective monopole (mode with ` = 0) for convenience. As a consequence, the
absolute scale of the power spectrum of the diffuse γ-ray flux φ(s) becomes ambiguous.
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Figure 4.13: Illustration of the point sources in the γ-ray sky in pseudocolor and in Mollweide pro-
jection. Markers show point sources from the second Fermi LAT source catalog (Nolan et al. 2012)
for comparison, whereby the gray scale indicates their average detection significance as listed in the
catalog. Special markers show a selection of pulsars (squares), local SNRs (stars), and well-known
galaxies (pentagons), as well as famous extragalactic objects (diamonds), cf. text.

candidate ID l[◦] b[◦]
F (u) contributing

dist. [◦] primary association
[ cm−2 s−1] energy bands

pDF091157 −164.88 4.27 2.8× 10−6 XXXXXXX 0.01 2FGL J0633.9+1746
pDF009247 179.79 64.92 1.4× 10−7 XXXXXXXXX 0.11 2FGL J1104.4+3812
pDF103031 −96.40 −2.76 6.0× 10−6 XXXXXXXXX 0.05 2FGL J0835.3−4510
pDF108550 −175.42 −5.79 7.4× 10−7 XXXXXXXXX 0.03 2FGL J0534.5+2201
pDF036698 63.60 38.89 3.5× 10−8 XXXXXXXXX 0.04 2FGL J1653.9+3945
pDF029553 21.85 44.08 4.1× 10−8 XXXXXXXXX 0.14 2FGL J1555.7+1111
pDF176023 17.65 −52.32 8.3× 10−8 XXXXXXXXX 0.09 2FGL J2158.8−3013
pDF161378 −111.41 −39.89 3.5× 10−8 XXXXXXXXX 0.04 2FGL J0449.4−4350
pDF006863 29.44 68.27 4.7× 10−8 XXXXXXXXX 0.07 2FGL J1427.0+2347
pDF158586 86.09 −38.18 4.0× 10−7 XXXXXXXX 0.02 2FGL J2253.9+1609

...

Table 4.3: Extract from the pDF catalog. Listed are candidate’s ID (derived from the HEALPix
index), position in Galactic longitude l and latitude b, total flux between 1–100 GeV, contributing
energy bands, and distance to the associated source in the second Fermi LAT source catalog (Nolan
et al. 2012). The full catalog including uncertainties is available online at http://www.mpa-garching.
mpg.de/ift/fermi/ as a FITS table.

detection significance) of point sources from the second Fermi LAT source catalog (Nolan
et al. 2012).8 There is a diversity of sources, which is why we highlight a selection by spe-
cial markers. The brightest γ-ray sources are pulsars (PSRs) like Vela (PSR J0835-4510),
Geminga (PSR J0633+1746), and Crab (PSR J0534+2200), but there are also pulsars that

8See also http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog/.

http://www.mpa-garching.mpg.de/ift/fermi/
http://www.mpa-garching.mpg.de/ift/fermi/
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog/
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have first been detected in γ-ray; e.g., LAT PSR J0007+7303 and LAT PSR J0357+3205.
The Galactic disk, and especially the bulge, is clustered with point sources including, among
others, supernova remnants (SNRs) like W51C, W44, W30, and IC443. There are also many
homogeneously distributed extragalactic sources, for example, the starburst galaxy Cigar
(M82) or our neighboring galaxy Andromeda (M31). Furthermore, the core of Centaurus A
(NGC 5128) and the Small and Large Magellanic Cloud are visible in γ-rays.

Deriving a catalog of source candidates from the point-like flux is difficult because a
point source might, for example, appear in neighboring pixels at different energies due to
different noise realizations and the aforementioned energy dependence of the signal-to-noise
ratio and the PSF. In order to nominate a candidate, we check if the point-like contribution
exceeds 5σ above the diffuse emission in at least two of the energy bands 1–8, which is a
simple but conservative criterion taking the diffuse reconstruction uncertainty σ into account,
cf. Fig. 4.3. Notice that we exclude the highest energy band from our search, since the
point-like flux in this band seems to be contaminated as discussed in Sec. 4.3.2. We refer to
the compiled point source catalog as preliminary D3PO Fermi (pDF) catalog.

Qualitatively, the point-like flux found by D3PO agrees with the second Fermi LAT source
catalog as shown in Fig. 4.13. A few sources appear slightly off-center or smeared out over
two or more pixels. The reason for this is that such sources are positioned in-between grid
points of the chosen HEALPix grid. Notice that image pixels in Fig. 4.13 do not represent
HEALPix pixels.

We find 2,522 source candidates, cf. Tab. 4.3. For comparison, the 1 and 2 year Fermi
LAT source catalog comprises 1,451 and 1,873 sources, respectively (Abdo et al. 2010a; Nolan
et al. 2012). 1,269 of our sources can be associated with known LAT sources as the angular
distance between pDF candidate and catalog source is less than the angular resolution of our
reconstruction. The reason why we do not confirm all objects in the second Fermi LAT source
catalog is the conservative criterion we apply. This still leaves 1,253 new source candidates
to be confirmed by future work.

We caution that a more detailed study is necessary to confirm or reject those candidates.
The analysis of the individual sources, best done on more constrained ROIs and with higher
angular resolution, is left for future work.

In the following, we compare the pDF candidates for which we find an unique association
within the second Fermi LAT source catalog (Nolan et al. 2012) by means of their spectral in-
dex and total flux. Notice that both studies are based on different data, exposure, calibration,
and analysis algorithms.9

The spectral index of a sources’ energy spectra should not (or at least not strongly) be
influenced by those differences. For each source, we attempt to fit three different spectral
shapes: a plain power-law,

φ(u)(E) = K

(
E

E0

)−γ(u)
, (4.2)

a log-parabola,

φ(u)(E) = K

(
E

E0

)−γ(u)−β log(E/E0)

, (4.3)

9The main differences are the selection of SOURCE (CLEAN) events, the 2 (5.5) years of observation, and
the usage of the P7_V6 (P7REP_V15) IRFs in the second Fermi LAT source catalog (Nolan et al. 2012) (the
candidate catalog presented here).
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Figure 4.14: Comparison of the the second Fermi LAT source catalog (Nolan et al. 2012) and candidates
from the reconstruction. Panel (a) shows the histogram and scatter plot of the spectral indices γ(u)

of candidates versus catalog sources. In the latter, a 1 : 1 line (black solid) is plotted for comparison,
and the markers indicate the fit spectral shape, cf. legend. Panel (b) shows the histogram and scatter
plot of the logarithmic total fluxes log10(F/F0), where F0 = 1 cm−2 s−1. The scatter plot hosts an
1 : 1 line (black solid) and 1 : 2.3 line (black dashed) for comparison.

and a power-law with exponential cut-off,

φ(u)(E) = K

(
E

E0

)−γ(u)
exp

(
−E − E0

Ecut

)
. (4.4)

Here E0 = 1 GeV serves as a reference energy, and the spectral index γ(u) is a fit parameter
as are K, β, and Ecut. The preliminary source catalog contains the best fit parameters for all
shapes if applicable.

Figure 4.14a shows the comparison of the pDF spectral indices and the ones listed in
the second Fermi LAT source catalog (corrected to E0 if need be). The scatter of spectral
indices is large, but comparable to the uncertainties. We find a rough agreement, although our
distribution is broadened towards higher indices. Most of the outliers yielding a high (low)
spectral index are modeled by a log-parabola (exponential cut-off) that has an additional
degree of freedom compared to the plain power-law. This implies that the versatility of point
source spectra might not be covered by the considered spectral shapes.
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Figure 4.14b shows a comparison of the total fluxes F (u), defined as

F (u) =

∫
dΩ

8∑
j=1

∫ Ẽmax
j

Ẽmin
j

dE

(
E

Emid
j

)−γ(u)
φ(u)(Emid

j ) (4.5)

with j labeling the energy bands and

Ẽmax
j = min{1 GeV, Emin

j }

Ẽmin
j = max{Emax

j , 100 GeV},

in a histogram and a scatter plot. The differences in the event selection, exposure, and
calibration seem to amount to an off-set in the total flux of an factor ∼ 2.3. Taking this
factor into account, the fluxes show a good agreement. At the faint end, our fluxes tend to
come below the fluxes reported in the second Fermi LAT source catalog (Nolan et al. 2012).
Since our analysis benefits from a higher exposure and improved calibration, the fluxes from
the Fermi collaboration might rather be considered as upper limits in this comparison.

Galaxy Cluster

Some galaxy clusters exhibit diffuse, extended radio emission, so-called radio halos, which
proves the existence of relativistic electrons therein. If relativistic protons are present as well,
γ-ray emission is to be expected due to hadronic interactions (Ackermann et al. 2010, and
references therein).

Feretti et al. (2012) provide a collection of cluster hosting radio halos. We investigate the
presence of γ-ray emission in the direction of those clusters, which would in our reconstruction
appear point-like due to the pixelization of our reconstruction. Tab. 4.4 lists our upper limits
of the total flux F up and the level of the diffuse emission F (s) at the cluster locations. The
upper limit flux is computed according to F up = F (u) + 2σF (s) , where σF (s) is the uncertainty
of the total diffuse flux F (s).10 This is the largest possible flux hidden under the diffuse γ-ray
emission.

We find upper limit fluxes between 10−10cm−2 s−1 and 10−8cm−2 s−1 for the energy
range 1–100 GeV. A few clusters contain or are in projection to known γ-ray point-sources
(active galaxies), which affects the upper limits for those clusters. These are: A1758a,
RXJ0107.7+5408, Perseus (NGC 1275 and IC310), A2029, A2390.

Ackermann et al. (2010) provide upper limits for nearby clusters above 0.1 GeV. Some
clusters are in both samples, namely A2256, A2319, Coma (A1656), Ophiuchus, Perseus
(A0426), A1914, A2029, A2142, A2163, A2744, Bullet (1E 0657-56), MACSJ0717.5+3745.
We find comparable or slightly lower upper limit fluxes. For example, for the Coma (A1656)
cluster Ackermann et al. (2010) report about 10−8cm−2 s−1 above 0.1 GeV. Assuming a
spectral index of 2.5 this translates to 3×10−10cm−2 s−1 above 1 GeV, which is slightly larger
than the 1.2× 10−10cm−2 s−1 we obtain.

However, we caution that our upper limits are not strict 95% confidence intervals, as
they are not a direct outcome of our inference, but estimated as described above. A closer
investigation is left for future work.

10Unfortunately, D3PO does not converge on an all-sky point-like uncertainty map.
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4.4 Conclusions & Summary

We analyze the Fermi LAT 5.5 year photon data in the energy range from 0.6 to 307.2 GeV.
Applying the D3PO inference algorithm, the data is effectively denoised, deconvolved, and
decomposed with Bayesian inference methods. In contrast to previous approaches by the
Fermi collaboration and others, our non-parametric reconstruction does not rely on emission
templates.

We obtain estimates for the diffuse and point-like contributions to the γ-ray flux. Fur-
thermore, D3PO also provides uncertainty information and the a priori unknown angular
power spectrum of the diffuse contribution.

The inferred diffuse photon flux reveals the diversity of the γ-ray sky. We clearly re-
produce the structure of the Galactic disk, bulge and local interstellar gas, all of which are
primarily illuminated by photons induced by hadronic interactions of CRs with the ISM. We
confirm the existence of the Giant Fermi Bubbles, as well as their homogeneous morphology,
sharp edges, and hard spectra. Moreover, we are also able to resolve small diffuse structures;
e.g., the γ-ray glow around Centaurus A.

The continuous reconstruction of the diffuse flux allows us to present the first spectral
index map of the diffuse γ-ray sky, as well as a pseudocolor composite visualizing the spectrally
different regions. Furthermore, the large-scale angular power spectrum of the diffuse emission
seems to obey a pow-law with index 2.45± 0.01 across all energy bands.

Inspired by the pseudocolor visualization, we decompose the diffuse γ-ray sky into a
“cloud”-like and “bubble”-like emission component. The former, tracing the dense, cold ISM,
is dominated by hadronic emission processes, while the latter, being morphologically and
spectrally distinct, seems to be dominated by leptonic processes in hot, dilute parts of the
ISM and outflows thereof. In particular, our findings indicate a preference for IC emission
from the Fermi bubbles and support scenarios (Yang et al. 2013; Cheng et al. 2011; Dogiel
et al. 2011; Chernyshov 2011; Carretti et al. 2013) in which the Fermi bubbles are explained
by hot outflows powered by strong activities in the Galactic center region. We report further,
smaller outflows of a similar population of relativistic particles at other locations.

The reconstruction of the point-like photon flux qualitatively confirms most of the sources
from the second Fermi LAT source catalog. Quantitatively, we derive a preliminary catalog of
source candidates that comprises 2,522 point sources. A more detailed analysis of this catalog
is left for future research.

Finally, we provide upper limit fluxes for galaxy clusters with known radio halos. Our
limits, although also preliminary, are comparable or tighter than the upper limits from the
Fermi collaboration’s study on galaxy clusters
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cluster name F up[ cm−2 s−1] F (s)[ cm−2 s−1]

A209 1.4× 10−10 1.6× 10−10

A399 1.8× 10−10 4.4× 10−10

A401 1.8× 10−10 4.4× 10−10

A520 2.1× 10−10 3.1× 10−10

A521 1.6× 10−10 3.0× 10−10

A523 2.0× 10−10 4.8× 10−10

A545 2.0× 10−10 5.1× 10−10

A665 1.2× 10−10 2.6× 10−10

A697 1.3× 10−10 2.4× 10−10

A746 1.2× 10−10 1.9× 10−10

A754 1.6× 10−10 2.7× 10−10

A773 1.2× 10−10 2.0× 10−10

A781 1.4× 10−10 1.9× 10−10

A851 1.3× 10−10 1.8× 10−10

A1213 1.8× 10−10 2.0× 10−10

A1300 1.9× 10−10 3.6× 10−10

A1351 1.0× 10−10 1.9× 10−10

A1656 1.2× 10−10 1.6× 10−10

A1689 1.6× 10−10 2.6× 10−10

A1758a 2.3× 10−10 2.0× 10−10

A1914 1.4× 10−10 1.9× 10−10

A1995 1.1× 10−10 1.7× 10−10

A2034 1.2× 10−10 1.9× 10−10

A2163 2.3× 10−10 7.5× 10−10

A2218 1.1× 10−10 2.3× 10−10

A2219 1.3× 10−10 2.1× 10−10

A2254 1.6× 10−10 3.6× 10−10

A2255 1.1× 10−10 2.3× 10−10

A2256 1.1× 10−10 2.6× 10−10

A2294 1.3× 10−10 3.6× 10−10

A2319 1.6× 10−10 4.5× 10−10

A2744 1.8× 10−10 1.7× 10−10

A3562 1.7× 10−10 3.9× 10−10

RXJ0107.7+5408 2.3× 10−10 8.9× 10−10

CL0016+16 1.6× 10−10 2.7× 10−10

CL0217+70 2.3× 10−10 1.4× 10−9

1E0657-56 1.5× 10−10 3.6× 10−10

MACSJ0717.5+3745 1.5× 10−10 3.1× 10−10

RXCJ1314.4-2515 1.9× 10−10 4.7× 10−10

RXCJ1514.9-1523 3.1× 10−10 5.1× 10−10

RXCJ2003.5-2323 3.1× 10−10 5.1× 10−10

CIZAJ2242.8+5301 2.2× 10−10 9.8× 10−10

Perseus 4.4× 10−8 7.5× 10−10

Ophiuchus 3.1× 10−10 1.7× 10−9

A1835 1.7× 10−10 2.7× 10−10

A2029 9.9× 10−10 3.5× 10−10

A2142 1.4× 10−10 2.7× 10−10

A2390 3.9× 10−10 4.3× 10−10

A2626 1.6× 10−10 3.3× 10−10

MRC0116+111 1.5× 10−10 2.6× 10−10

RBS797 1.0× 10−10 2.0× 10−10

RXJ1347.5-1145 1.8× 10−10 3.6× 10−10

RXCJ1504.1-0248 2.9× 10−10 5.1× 10−10

Table 4.4: Overview of total flux upper limits for clusters hosting a radio (mini-)halo from the collection
by Feretti et al. (2012).
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X-ray Computed Tomography

5.1 Motivation

X-ray computed tomography (CT) has become a standard tool for medical diagnosing as it
provides a non-invasive option for examining the interior of a subject.

During a CT scan, the emitting X-ray tube and the opposing detector are rotated around
the subject. Thereby, a series of projections along the radial axis in small angular increments
is performed. The intensity loss of the emitted X-rays due to interactions with matter is
measured along the lines of sight between the X-ray source and each detector element. In
this way, a thin tomographic slice of the subject is recorded, then the subject is moved along
the cylinder axis in order to scan the next circular slice, and so on, until the whole volume
to be examined is covered (Kak & Slaney 1988; Herman 2009).

The absorption of X-rays propagating through matter happens primarily through Comp-
ton scattering and (partial) ionization of atoms by inducing bound-bound transitions in its
electron shell. Such interactions can damage living tissue, in particular the Deoxyribonucleic
acid (DNA) molecules whose corruption can lead to cancer. For the subject’s protection, it is
therefore imperative to keep the X-ray exposure at a necessary minimum such that the image
quality suffices for medical diagnoses. In practice, radiation protection is ensured by many
regulations, mechanisms, and alternative options; e.g., the administration of contrast agents.

Another way of diminishing the required dose is the improvement of the imaging tech-
niques used to reconstruct (two- or) three-dimensional images from tomographic data. The
filtered back projection (FBP) is a standard, but in its basic form outdated, technique based on
a Radon transformation (Kak & Slaney 1988; Hsieh 2009). It offers a practical and especially
fast, heuristic approach, but its performance depends on the high quality and redundancy of
the CT data.

We propose using probabilistic methods to derive an inference algorithm that properly
treats noise in the data and can exploit prior knowledge. Accounting for noise statistics and
remedying the ambiguity of inverse problems by prior information can significantly reduce the
appearance of imaging artifacts, and thus improves the quality of the reconstructed medical
images.

Furthermore, keeping the level of image quality unchanged, we might be able to process
noisier data that require a smaller dose for the subject. This is the main motivation of this
study.
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5.2 Inference

A medical CT scan is a highly complex procedure. Here, we derive an inference model
in the language of information field theory (IFT) that captures all essential aspects of the
underlying inverse problem, but we also introduce a number of simplifications in order to keep
the complexity of the model minimal.

5.2.1 Simplified Data Model

The raw CT data is denoted as “sinogram” and provides a logarithmic intensity ratio (Kak
& Slaney 1988),

sinogram ≡ −a log

(
I

I0

)
, (5.1)

where a is a coefficient specific to the CT scanner, I the received, and I0 the emitted monochro-
matic X-ray intensity. Since the intensities are proportional to the respective number of X-ray
photons, we are free to exchange these quantities.

Following the same line of arguments as in Sect. 3.2.2, we assume the photon data d to
suffer from Poissonian shot noise,

dx P (d|λ) =
∏
i

P(di, λi) =
∏
i

1

di!
λdii e−λi , (5.2)

where i indexes the data entries; i.e., it labels detector pixels and projections consistently. In
accordance with Eq. (5.1), the expected number of photons λi ∝ Ii is given by

λi = λ0 exp

(
−a
∫

dri ρ(x)

)
. (5.3)

Here, we introduced the integral along the line of sight (LOS) ri over the quantity of interest
ρ = ρ(x), which is defined at real space positions x ∈ f. The X-ray absorption inside each
line increment dri depends on the present medium and its density; i.e., on the charge number
and number density of the present atoms (or molecules). Therefore, ρ describes the density
mixture of different media, which are air, soft tissue, bones, etc. At this point, we adopt
the simplification of considering only one average medium, and understand ρ as its physical
matter density. Extending this model to involve multiple components is conceivable, but
increases the complexity beyond the scope of this study.

Moreover, we can rewrite the integration over all LOS as a linear operation represented
by the response R,∫

dri ρ(x) =

∫
f

dx Ri(x) ρ(x) = (Rρ)i , (5.4)

and therefore

λ = λ0 exp (−aRρ) . (5.5)

As the geometry of the scanning strategy is fully absorbed into the response operator, any
configuration can be handled with this abstract approach.



5.2 Inference 97

10-2 10-1

|k| [ mm−1 ]

101

102

103

|k
|2

ex
p
(τ
k
)

samples
log-mean

(a)

10-2 10-1

|k| [ mm−1 ]

101

102

103

|k
|2

ex
p
(τ
k
)

samples
log-mean

(b)

Figure 5.1: Illustration of the prior Fourier power spectra for the lung slice (a) and the hip slice (b).
Both panels show the direct realization spectra of the samples (gray dotted line) and their logarithmic
mean (green solid line).

Notice that we, so far, have only considered monochromatic X-rays. In reality, however,
neither the emitted nor the detected photons have a single universal energy (see e.g., Alvarez &
Macovski 1976; Johnson et al. 2007). We refrain from extending the data model to incorporate
a dual- or multi-spectral response at this point. To explore the potential of such approaches
is left for future research.

5.2.2 Prior Knowledge

The matter density ρ is supposed to be strictly positive (with zero representing a vacuum).
In analogy to the discussion in Sect. 3.2.1, we enforce this positivity constraint on ρ by
introducing the signal field s = logρ as its logarithm. As a next step, we have to formulate
our a priori state of knowledge on this signal.

When physicians examine medical images, it is their prior knowledge built on their educa-
tion and experience that allows them to identify bones and distinguish organs from connective
tissue. Acquiring such skills from a medical image data base poses a typical machine learning
problem. Similarly, we can construct a prior from such a data base.

For each data set, we are given a total of 10 images showing reconstructions of similar
CT slices. Assuming the signal field to be a statistically homogeneous and isotropic Gaussian
random field, we are able to sufficiently constrain the signal covariance S by its Fourier power
spectrum using this limited data base; i.e.,

sx P (s|S) = G(s,S) =
1√

det[2πS]
exp

(
−1

2
s†S−1s

)
. (5.6)

This prior assumption is functionally adequate, though it is a rather crude approximation
to reality. As discussed above, we know that there are distinct media that absorb X-rays
differently. Metals and bones are strong absorbers, while soft tissue absorbs less X-rays,
and air almost none. Introducing a multi-component signal model, which would allow us to
construct more realistic priors, is not conceptionally different, though. Moreover, we could
drop the assumption of statistical isotropy and homogeneity and build a prior covariance in
position space. For this purpose, we would, however, need to impose other approximations,
such as a sparsity assumption. Or we would need to construct the covariance explicitly, which
is computationally unattractive and demands a spatial alignment of the images from the data
base.
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(a) (b)

(c) (d)

Figure 5.2: Illustration of the reconstruction of the lung slice. The top panels (a) and (b) show FBPs,
while the bottom panels (c) and (d) show the reconstruction using IFT. The left panels (a) and (c)
show the actual medical image in gray scale, the right panels (b) and (d) show the corresponding
reconstructed signal field on a logarithmic false color scale.

5.2.3 Algorithm

The simplest approach to solve the inverse problem of reconstructing the (logarithmic) mat-
ter density from CT data is to maximize the posterior distribution. This is equivalent to
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(a) (b)

(c) (d)

Figure 5.3: Illustration of the reconstruction of the hip slice. Labeling as in Fig. 5.2

minimizing the corresponding information Hamiltonian,

H(s|d) = − logP (s|d) (5.7)

= H0 + λ0 1† exp (−aRes) + ad†Res +
1

2
s†S−1s, (5.8)

where all terms independent of s are absorbed into the term H0. This Hamiltonian is similar
to the one derived for the D3PO problem in Eq. (3.27), where, in addition, a point-like signal
field and further parameters are present. A “light” version of the D3PO inference algorithm,
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which was developed for high energy astronomy, can thus be used to infer medical images with
few modifications. All that effectively needs to be modified is the definition of the expected
photon counts λ, which, according to Eq. (5.5), reads

λ = λ0 exp (−aRes) , (5.9)

in comparison to Eq. (3.5). Other differences, such as the completely changed measurement
geometry, the replacement of the response operator, or the omission of a point-like component,
are all covered by input specifications for the algorithm. This is possible because the D3PO
algorithm is based on the NIFTy library and can therefore with ease switch from the celestial
sphere to a 2D tomographic plane.

5.3 Applications

In this study, we apply the “light” D3PO algorithm to the X-ray CT scans of two different
slices through the torso: one at the level of the lungs, the other at the level of the hip joints.

We compare our reconstructions to FBPs done with the same tomographic projector
(Fehringer et al. 2014) using a parallel-beam projection and an angular separation of π/1152
over a half sphere. All reconstructions have a resolution of 736 × 736 pixels of which each
is 0.675 × 0.675 mm2 in size. According to the manufacturer the coefficient a equals 2294.5,
however, the emitted number of photons λ0 is confidential and therefore needs to be calibrated.

For both, the “lung” and the “hip” slice, 10 images are available for determining the
prior covariance. We compute the Fourier power spectrum of each sample image and the
logarithmic mean of the samples. The power spectra we obtain are shown in Fig. 5.1. The
individual sample spectra exhibit similar patterns on the same scales, and those are also
represented in their logarithmic mean, although with reduced amplitudes. This implies that
the corresponding features in the images are of similar size, although their position information
is lost when we condense the images into power spectra. Features that are present in both
samples relate to common features, such as the CT table.

Figure 5.2 shows the reconstructions of the lung slice in gray scale and on logarithmic false
color scale. While the former gives an impression of the medical image used for diagnosing,
the latter shows the reconstructed signal s. The FBP and our reconstruction are competitive,
as both show the subject’s interior with great detail so that different tissues are clearly visible.
The FBP exhibits slight radial artifacts, while the IFT reconstruction, on the contrary, shows
mostly large-scale artifacts, especially at the lower quarter of the image, below the CT table.
Since those are barely present in the FBP, we conclude that they come from the forward
projection, which is not needed in the FBP, or from a discrepancy between forward and back
projection. D3PO is an iterative algorithm that sequentially applies the projections in form
of the response R and its adjoint R†. If forward and back projection are not exactly adjoint,
a tiny discrepancy can escalate and cause artifacts or corrupt the whole reconstruction.

The results for the hip slice are shown in Fig. 5.3. The above mentioned applies also
here, as we find a general agreement between the two reconstructions. The IFT reconstruction,
though, appears blurred towards a spot located near the image center. This spot, which is
similar to a point source, apparently disagrees with our model of a single continuous signal
field.
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Figure 5.4: Illustration of the reconstruction of the central 512 × 512 pixels of the lung slice on a
logarithmic false color scale. The top panels are FBPs, the bottom panels are reconstructions using
IFT. From left to right the number of projections considered decreases by a factor of 2 each.

Less Data

One way of reducing the radiation dose for the subject is to record less projections. So
far, we used all 1152 projections in the reconstruction of the lung slice. Figure 5.4 shows
reconstructions that used only every 2nd, 4th, 8th, and 16th projection of the same data
set. Fewer projections mean less redundancy in the data, and thus pose a tougher inverse
problem.

The FBPs suffer from less available data by exhibiting stronger radial artifacts. This
results in grainier images in which small details perish or are picked to pieces. The IFT
reconstructions display only a few radial artifacts, but appear increasingly blurred as the
number of used projections diminishes. This behavior is to be expected, since the importance
of the prior grows if the constraints of the data are weakened.

In comparison, the FBP and IFT reconstructions using the full and halved data set are
competitive. When only 1 out of 4 projections is available, the preference seems to lie with
the IFT reconstruction. Beyond that a comparison of the reconstructions is difficult. An
assessment of the actual diagnostic value of those images should, however, be left to the
experienced eyes of physicians.

5.4 Conclusion & Summary

We have derived a probabilistic imaging technique based on the D3PO inference algorithm
that is capable of reconstructing CT slices from real data. The underlying model includes
several simplifications, especially with respect to the prior assumptions. A single signal field
that is a priori assumed to be a statistically homogeneous and isotropic Gaussian random field
suffices, but shows its limitations; e.g., when encountering point-like features caused by small
pieces of metal. We discussed potential extensions introducing multiple signal components
for different classes of media; i.e., air, soft tissue, bones, metals, etc.

The derived imaging technique was successfully applied to anonymized CT data. The
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resulting reconstructions are competitive with standard FBPs. Furthermore, we test the
fidelity of the reconstructions when fewer projections are available, since this means exposing
the subject to less radiation. Although judging the diagnostic value of the reconstructions
is difficult, we rank the images obtained using IFT as competitive, if not slightly better in
comparison to FBPs. We conclude that this study serves as a proof of concept for information
theory based medical imaging and provides a promising prospect for future research.
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Conclusions & Future Perspectives

We advanced the imaging techniques for high energy photon observations and successfully
applied them to studies of the γ-ray sky seen by the Fermi Large Area Telescope (LAT). We
presented a novel approach that simultaneously provides estimates for the continuous, diffuse
emission and the point-like γ-ray flux using information field theory (IFT).

After developing NIFTy, a versatile library for signal inference, we derived the D3PO
algorithm tasked with denoising, deconvolving, and decomposing photon observations. It
addresses the removal or suppression of Poissonian shot noise in photon count images, the
rectification of instrumental imprints or artifacts, and the separation of diffuse and point-
like components. The D3PO inference algorithm is based on a Bayesian parameter model
that describes the multivariate statistics of high dimensional signal fields and their non-linear
entanglement in the language of IFT. To solve this complex inverse problem, we exploited
a priori knowledge on the morphological differences of the diffuse and point-like signal by
assuming appropriate statistics and correlation structures. However, D3PO does not only
reconstruct the diffuse and point-like photon flux from photon count images, it also estimates
the harmonic power spectrum of the diffuse component and provides a posteriori uncertainty
information on the reconstruction.

Using the D3PO inference algorithm, we analyzed 5.5 years of observational data from the
Fermi LAT and presented a continuous reconstruction of the diffuse γ-ray sky, in particular
in the GeV energy range, for the first time. This non-parametric estimate excels previous
approaches that rely on fitting and subtracting emission templates. The all-sky maps of
the diffuse γ-ray emission we obtained and publicly released open up various possibilities for
scientific studies. Exploring the spectral properties of the diffuse emission, we presented the
first all-sky spectral index map of anisotropic diffuse γ-ray emission and uncovered two distinct
components. We concluded that the “cloud”-like component traces the cold, dense interstellar
medium, since it is morphologically and spectrally consistent with hadronic interactions of
cosmic ray (CR) nuclei with interstellar gas. On the contrary, the “bubble”-like component
capturing the morphology of the Giant Fermi Bubbles exhibits a harder spectrum, which can
be explained by inverse Compton scattering of CR electrons with low energy photons. This
leads us to the conclusion that a leptonic scenario explaining the γ-ray emission observed
from the bubbles is more compelling.

Our analysis of the Fermi γ-ray sky also yielded a reconstruction of the point-like flux
from which we built a point source catalog listing 2,522 candidates. 1,269 of these were
confirmed comparing with the second Fermi LAT source catalog, which leaves the potential
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discovery of 1,253 new sources. Furthermore, we provided upper limit fluxes for a selection
of galaxy clusters that are known to have a radio halo.

Finally, we proved the portability of inference algorithms developed using the NIFTy
library by applying the D3PO algorithm in the area of medical X-ray computed tomography
(CT). We showed that such advanced imaging techniques developed for astronomical imaging
are absolutely competitive with standard medical imaging techniques. The successful recon-
struction of typical CT slices we carried out provides promising prospects for analyzing CT
data sets with less redundancy that would require less X-ray exposure for a subject.

Outlook

Thanks to the great success of the NIFTy library, the D3PO inference algorithm, and the
applications presented in this thesis, there are multiple directions of future research. In the
following, a brief outlook on the most promising pathways is given.

• The interplay of spatial and spectral correlations. Extending the information
theoretical methodology and numerical implementation to a coherent treatment of spatial
and spectral correlation structures would be the next logical step. This would allow us
to exploit the correlation of spatial features across the energy domain, and vice versa,
when reconstructing position and energy dependent signals from noisy data cubes. The
consequent extension of the D3PO algorithm would render the inference of multiple,
multivariate components from multi-channel high energy photon data possible.

• A refined analysis of the Fermi γ-ray sky. In case of a simple reanalysis, we
should involve further low energy bands down to the LAT limit of 0.02 GeV and refine
the resolution of the spherical grid. Such a reanalysis might also profit from, in the
meantime, improved instrument calibrations, especially with respect to the LAT’s point
spread function. We should also reassess our preliminary point source catalog, ideally by
studying the individual sources in localized regions of interest.

• Expansion of the model for medical imaging. In the first place, this includes the
incorporation of a multi-component model for the different absorber media and the con-
struction of priors from a sufficiently large medical data base. Next, we should adopt
a realistic tomographic measurement scenario into our model that accounts for energy
dispersion, not strictly straight projections, etc. In the end, medical and Galactic to-
mography might both profit from these improvements.
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NIFTY supplement

A.1 Remark On Matrices

The discretization of an operator that is defined on a continuum is a necessity for its computa-
tional implementation and is analogous to the discretization of fields; cf. Sec. 2.2.2. However,
the involvement of volume weights can cause some confusion concerning the interpretation of
the corresponding matrix elements. For example, the discretization of the continuous identity
operator, which equals a δ-distribution δ(x− y), yields a weighted Kronecker-Delta δpq,

id ≡ δ(x− y) 7→
〈〈
δ(x− y)

〉
fp

〉
fq =

δpq
Vq
, (A.1)

where x ∈ fp and y ∈ fq. Say a field ξ is drawn from a zero-mean Gaussian with a covariance
that equals the identity, G(ξ, id). The intuitive assumption that the field values of ξ have a
variance of 1 is not true. The variance is given by

〈ξpξq〉{ξ} =
δpq
Vq
, (A.2)

and scales with the inverse of the volume Vq. Moreover, the identity operator is the result of
the multiplication of any operator with its inverse, id = A−1A. It is trivial to show that, if
A(x, y) 7→ Apq and

∑
q A
−1
pq Aqr = δpr, the inverse of A maps as follows,

A−1 7→
〈〈
A−1(x− y)

〉
fp

〉
fq = (A−1)pq =

A−1
pq

VpVq
, (A.3)

where A−1
pq in comparison to (A−1)pq is inversely weighted with the volumes Vp and Vq.

Since all those weightings are implemented in NIFTy, users need to concern themselves
with these subtleties only if they intend to extend the functionality of NIFTy.

A.2 Libraries

NIFTy depends on a number of other libraries which are listed here for completeness and in
order to give credit to the authors.
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• NumPy, SciPy1 (Oliphant 2006), MatPlotLib (Hunter 2007), and several other Python
standard libraries

• GFFT2 for generalized fast Fourier transformations on regular and irregular grids; of
which the latter are currently considered for implementation in a future version of NIFTy

• HEALPy3 and HEALPix (Górski et al. 2005) for spherical harmonic transformations
on the HEALPix grid which are based on the LibPSHT (Reinecke 2011) library or its
recent successor LibSHARP4 (Reinecke & Seljebotn 2013), respectively

• Another Python wrapper5 for the performant LibSHARP library supporting further
spherical pixelizations and the corresponding transformations

These libraries have been selected because they have either been established as standards or
they are performant and fairly general.

The addition of alternative numerical libraries is most easily done by the introduction of
new derivatives of the space class. Replacements of libraries that are already used in NIFTy
are possible, but require detailed code knowledge.

1NumPy and SciPy homepage http://numpy.scipy.org/
2GFFT homepage https://github.com/mrbell/gfft
3HEALPy homepage https://github.com/healpy/healpy
4LibSHARP homepage http://sourceforge.net/projects/libsharp/
5libsharp-wrapper homepage https://github.com/mselig/libsharp-wrapper

http://numpy.scipy.org/
https://github.com/mrbell/gfft
https://github.com/healpy/healpy
http://sourceforge.net/projects/libsharp/
https://github.com/mselig/libsharp-wrapper
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A.3 Wiener Filter Code Example

A.3.1 Release Version

from nifty import * # version 0.3.0

from scipy.sparse.linalg import LinearOperator as lo

from scipy.sparse.linalg import cg

class propagator(operator): # define propagator class

_matvec = (lambda self, x: self.inverse_times(x).val.flatten())

def _multiply(self, x):

# some numerical invertion technique; here, conjugate gradient

A = lo(shape=tuple(self.dim()), matvec=self._matvec, dtype=self.domain.datatype)

b = x.val.flatten()

x_, info = cg(A, b, M=None)

return x_

def _inverse_multiply(self, x):

S, N, R = self.para

return S.inverse_times(x) + R.adjoint_times(N.inverse_times(R.times(x)))

# some signal space; e.g., a one-dimensional regular grid

s_space = rg_space(512, zerocenter=False, dist=0.002) # define signal space

# or rg_space([256, 256])

# or hp_space(128)

k_space = s_space.get_codomain() # get conjugate space

kindex, rho = k_space.get_power_index(irreducible=True)

# some power spectrum

power = [42 / (kk + 1) ** 3 for kk in kindex]

S = power_operator(k_space, spec=power) # define signal covariance

s = S.get_random_field(domain=s_space) # generate signal

R = response_operator(s_space, sigma=0.0, mask=1.0, assign=None) # define response

d_space = R.target # get data space

# some noise variance; e.g., 1

N = diagonal_operator(d_space, diag=1, bare=True) # define noise covariance

n = N.get_random_field(domain=d_space) # generate noise

d = R(s) + n # compute data

j = R.adjoint_times(N.inverse_times(d)) # define source

D = propagator(s_space, sym=True, imp=True, para=[S,N,R]) # define propagator

m = D(j) # reconstruct map

s.plot(title="signal") # plot signal

d.cast_domain(s_space)

d.plot(title="data", vmin=s.val.min(), vmax=s.val.max()) # plot data

m.plot(title="reconstructed map", vmin=s.val.min(), vmax=s.val.max()) # plot map
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A.3.2 Current Version

from __future__ import division

from nifty import * # version 0.8.0

# some signal space; e.g., a two-dimensional regular grid

x_space = rg_space([128, 128]) # define signal space

k_space = x_space.get_codomain() # get conjugate space

# some power spectrum

power = (lambda k: 42 / (k + 1) ** 3)

S = power_operator(k_space, spec=power) # define signal covariance

s = S.get_random_field(domain=x_space) # generate signal

R = response_operator(x_space, sigma=0.0, mask=1.0, assign=None) # define response

d_space = R.target # get data space

# some noise variance; e.g., signal-to-noise ratio of 1

N = diagonal_operator(d_space, diag=s.var(), bare=True) # define noise covariance

n = N.get_random_field(domain=d_space) # generate noise

d = R(s) + n # compute data

j = R.adjoint_times(N.inverse_times(d)) # define information source

D = propagator_operator(S=S, N=N, R=R) # define information propagator

m = D(j, W=S, tol=1E-3, note=True) # reconstruct map

s.plot(title="signal") # plot signal

d_ = field(x_space, val=d.val, target=k_space)

d_.plot(title="data", vmin=s.min(), vmax=s.max()) # plot data

m.plot(title="reconstructed map", vmin=s.min(), vmax=s.max()) # plot map



Appendix B

D3PO supplement

B.1 Point Source Stacking

In Sec. 3.2.3, a prior for the point-like signal field has been derived under the assumption
that the photon flux of point sources is independent between different pixels and identically
inverse-Gamma distributed,

ρ(u)
x x I

(
ρ(u)
x , β =

3

2
, ρ0η

)
∀x, (B.1)

with the shape and scale parameters, β and η. It can be shown that, for β = 3
2 , the sum of

N such variables still obeys an inverse-Gamma distribution,

ρ
(u)
N =

N∑
x

ρ(u)
x (B.2)

ρ
(u)
N x I

(
ρ

(u)
N , β =

3

2
, N2ρ0η

)
. (B.3)

For a proof see (Giron 2001).

In the case of β = 3
2 , the power-law behavior of the prior becomes independent of the

discretization of the continuous position space. This means that the slope of the distribution

of ρ
(u)
x remains unchanged notwithstanding that we refine or coarsen the resolution of the

reconstruction. However, the scale parameter η needs to be adapted for each resolution; i.e.,
η → N2η if N pixels are merged.

B.2 Covariance & Curvature.

The covariance D of a Gaussian G(s −m,D) describes the uncertainty associated with the
mean m of the distribution. It can be computed by second moments or cumulants according
to Eq. (3.3), or in this Gaussian case as the inverse Hessian of the corresponding information
Hamiltonian,

∂2H

∂s∂s†

∣∣∣∣
s=m

=
∂2

∂s∂s†

(
1

2
(s−m)†D−1(s−m)

) ∣∣∣∣
s=m

= D−1. (B.4)
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In Sec. 3.3, uncertainty covariances for the diffuse signal field s and the point-like signal field
u have been derived that are here given in closed form.

The MAP uncertainty covariances introduced in Sec. 3.3.1 are approximated by inverse
Hessians. According to Eq. (3.32), they read

D(s)
xy

−1 ≈

{∑
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(
1− di

li

)
Rixem

(s)
x

}
δxy + S?xy

−1 +
∑
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(
Rixem
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)(
Riye

m
(s)
y

)
,

and

D(u)
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Rixem
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(u)
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(B.5)

with

li =

∫
dx Rix

(
em

(s)
x + em

(u)
x

)
. (B.6)

The corresponding covariances derived in the Gibbs approach according to Eq. (3.47), yield
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They are identical up to the +1
2Dxx terms in the exponents. On the one hand, this reinforces

the approximations done in Sec. 3.3.2. On the other hand, this shows that higher order
correction terms might alter the uncertainty covariances further, cf. Eq. (3.39). The concrete
impact of these correction terms is difficult to judge, since they introduce terms involving
Dxy that couple all elements of D in an implicit manner.

Notice that the inverse Hessian describes the curvature of the potential, its interpretation
as uncertainty is, strictly speaking, only valid for quadratic potentials. However, in most cases
it is a sufficient approximation.
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The Gibbs approach provides an alternative by equating the first derivative of the Gibbs
free energy with respect to the covariance with zero. Following Eq. (3.48), the covariances
read
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=
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}
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and
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}
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Compared to the above solutions, there is one term missing indicating that they already lack
first order corrections. For this reasons, the solutions obtained from the inverse Hessians are
used in the D3PO algorithm.

B.3 Posterior Approximation

B.3.1 Information Theoretical Measure

If the full posterior P (z|d) of an inference problem is so complex that an analytic handling
is infeasible, an approximate posterior Q might be used instead. The fitness of such an
approximation can be quantified by an asymmetric measure for which different terminologies
appear in the literature.

First, the Kullback-Leibler divergence,

DKL(Q,P ) =

∫
Dz Q(z|d) log

Q(z|d)

P (z|d)
=

〈
log

Q(z|d)

P (z|d)

〉
Q

, (B.12)

defines mathematically an information theoretical distance, or divergence, which is minimal
if a maximal cross information between P and Q exists (Kullback & Leibler 1951).

Second, the information entropy,

SE(Q,P ) = −
∫
Dz P (z|d) log

P (z|d)

Q(z|d)
=

〈
− log

P (z|d)

Q(z|d)

〉
P

= −DKL(P,Q),

is derived under the maximum entropy principle (Jaynes 1957) from fundamental axioms
demanding locality, coordinate invariance and system independence, cf. Caticha (2008, 2011).

Third, the (approximate) Gibbs free energy (Enßlin & Weig 2010),

G =
〈
H(z|d)

〉
Q
− SB(Q) (B.13)

=
〈
− logP (z|d)

〉
Q
−
〈
− logQ(z|d)

〉
Q

= DKL(Q,P ),

describes the difference between the internal energy 〈H(z|d)〉Q and the Boltzmann-Shannon
entropy SB(Q) = SE(1, Q). The derivation of the Gibbs free energy is based on the principles
of thermodynamics1.

The Kullback-Leibler divergence, information entropy, and the Gibbs free energy are
equivalent measures that allow one to assess the approximation Q ≈ P . Alternatively, a
parametrized proposal for Q can be pinned down by extremizing the measure of choice with
respect to the parameters.

1In Eq. (B.13), a unit temperature is implied, cf. discussion by Enßlin & Weig (2010); Iatsenko et al. (2012);
Enßlin & Weig (2012)
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B.3.2 Calculus of Variations

The information theoretical measure can be interpreted as an action to which the principle of
least action applies. This concept is the basis for variational Bayesian methods (Jordan et al.
1999; Wingate & Weber 2013), which enable among others the derivation of approximate
posterior distributions.

Let z be a set of multiple signal fields, z = {z(i)}i∈N, d a given data set, and P (z|d)
the posterior of interest. In practice, such a problem is often addressed by a mean field
approximation that factorizes the variational posterior Q,

P (z|d) ≈ Q =
∏
i

Qi(z
(i)|µ,d). (B.14)

Here, the mean field µ, which mimics the effect of all z(i 6=j) onto z(j), has been introduced.
The approximation in Eq. (B.14) shifts any possible entanglement between the z(i) within P
into the dependence of z(i) on µ within Qi. Hence, the mean field µ is well determined by
the inference problem at hand, as demonstrated in the subsequent Sect. B.3.3. Notice, that
µ represents effective rather than additional degrees of freedom.

Following the principle of least action, any variation of the Gibbs free energy must vanish.
Let us consider a variation δj = δ/δQj(z

(j)|µ,d) with respect to one approximate posterior
Qj(z

(j)|µ,d). It holds,

δQi(z̃
(i)|µ,d)

δQj(z(j)|µ,d)
= δij δ(z

(i) − z̃(j)). (B.15)

Computing the variation of the Gibbs free energy yields
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δ
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(B.16)

=
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+
∑
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(B.17)

=
δ
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Qi 6=j

+ logQj(z
(j)|µ,d) + const. (B.18)

This defines a solution for the approximate posteriorQj , where the constant term in Eq. (B.18)
ensures the correct normalization2 of Qj ,

Qj(z
(j)|µ,d) ∝ exp

(
−
〈
H(z|d)

∣∣∣
z(j)

〉∏
Qi 6=j

)
. (B.19)

2The normalization could be included by usage of Lagrange multipliers; i.e., by adding a term
∑
i λi
(
1 −∫

Dz(i) Qi(z
(i)|µ,d)

)
to the Gibbs free energy in Eq. (B.16).
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Although the parts z(i 6=j) are integrated out, Eq. (B.19) is no marginalization since the inte-
gration is performed on the level of the (negative) logarithm of a probability distribution. The
success of the mean field approach might be that this integration is often more well-behaved
in comparison to the corresponding marginalization. However, the resulting equations for the
Qi depend on each other, and thus need to be solved self-consistently.

A maximum a posteriori solution for z(j) can then be found by minimizing an effective
Hamiltonian,

argmax
z(j)

P (z|d) = argmin
z(j)

H(z|d) ≈ argmin
z(j)

〈
H(z|d)

∣∣∣
z(j)

〉∏
Qi 6=j

. (B.20)

Since the posterior is approximated by a product, the Hamiltonian is approximated by a sum,
and each summand depends on solely one variable in the partition of the latent variable z.

B.3.3 Example

In this section, the variational method is demonstrated with an exemplary posterior of the
following form,

P (s, τ |d) =
P (d|s)
P (d)

P (s|τ ) P (τ ) (B.21)

=
P (d|s)
P (d)

G(s,S) Pun(τ |α, q) Psm(τ |σ), (B.22)

where P (d|s) stands for an arbitrary likelihood describing how likely the data d can be
measured from a signal s, and S =

∑
k eτkSk for a parametrization of the signal covariance.

This posterior is equivalent to the one derived in Sec. 3.2 in order to find a solution for the
logarithmic power spectrum τ . Here, any explicit dependence on the point-like signal field u
is veiled in favor of clarity. The corresponding Hamiltonian reads

H(s, τ |d) = − logP (s, τ |d) (B.23)

= H0 +
1

2

∑
k

(
%kτk + tr

[
ss†S−1

k

]
e−τk

)
(B.24)

+ (α− 1)†τ + q†e−τ +
1

2
τ †Tτ ,

where %k = tr
[
SkSk

−1
]

and all terms constant in τ , including the likelihood P (d|s), have
been absorbed into H0.

For an arbitrary likelihood it might not be possible to marginalize the posterior over s
analytically. However, an integration of the Hamiltonian over s might be feasible since the
only relevant term is quadratic in s. As, on the one hand, the prior P (s|τ ) is Gaussian and,
on the other hand, a posterior mean m and covariance D for the signal field s suffice, cf.
Eq. (3.2) and (3.3), let us assume a Gaussian approximation for Qs; i.e., Qs = G(s−m,D).

We now introduce a mean field approximation, denoted by µ, by changing the causal
structure as depicted in Fig. B.1. With the consequential approximation of the posterior,

P (s, τ |d) ≈ G(s−m,D) Qτ (τ |µ,d), (B.25)
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(a)

model

τ s

d

(b)

model

µ

τ s

d

Figure B.1: Graphical model for the variational method applied to the example posterior in Eq. (B.21).
Panel (a) shows the graphical model without, and panel (b) with the mean field µ.

we can calculate the effective Hamiltonian for τ as〈
H(s, τ |d)

∣∣∣
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〉
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2
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)
S−1
k

]
e−τk ,

(B.26)

where γ = (α− 1) + 1
2%.

The nature of the mean field µ can be derived from the coupling term in Eq. (B.24) that
ensures an information flow between s and τ ,

µ =

(〈
tr
[
ss†S−1

k

]〉
Qs〈∑

k e−τkS−1
k

〉
Qτ

)
=

(
tr
[(
mm† +D

)
S−1
k

]〈
S−1

〉
Qτ

)
(B.27)

Hence, the mean field effect on τk is given by the above trace, and the mean field effect on s
is described by

〈
S−1

〉
Qτ

.

Extremizing Eq. (B.26) yields

eτ =
q + 1

2

(
tr
[(
mm† +D

)
S−1
k

])
k

γ + Tτ
. (B.28)

This formula is in agreement with the critical filter formula (Enßlin & Frommert 2011; Op-
permann et al. 2012b). In case a Gaussian likelihood and no smoothness prior is assumed, it
is the exact maximum of the true posterior with respect to the (logarithmic) power spectrum.
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B.4 Model Parameter Sampling

α = 1 q = 10−12 σ = 1 σ = 10 σ = 100 σ = 1000 σ →∞

β = 1 η = 10−6 ε(s) = 0.06710 ε(s) = 0.05406 ε(s) = 0.05323 ε(s) = 0.05383 ε(s) = 0.05359

ε(u) = 0.02000 ε(u) = 0.01941 ε(u) = 0.01602 ε(u) = 0.01946 ε(u) = 0.01898

β = 5
4

η = 10−6 ε(s) = 0.02874 ε(s) = 0.01929 ε(s) = 0.01974 ε(s) = 0.02096 ε(s) = 0.01991

ε(u) = 0.01207 ε(u) = 0.01102 ε(u) = 0.01090 ε(u) = 0.01123 ε(u) = 0.01104

β = 3
2

η = 10−6 ε(s) = 0.05890 ε(s) = 0.02237 ε(s) = 0.02318 ε(s) = 0.02238 ε(s) = 0.02344

ε(u) = 0.02741 ε(u) = 0.01343 ε(u) = 0.01346 ε(u) = 0.01342 ε(u) = 0.01351

β = 7
4

η = 10−6 ε(s) = 0.10864 ε(s) = 0.04304 ε(s) = 0.03234 ε(s) = 0.03248 ε(s) = 0.03263

ε(u) = 0.04840 ε(u) = 0.02767 ε(u) = 0.02142 ε(u) = 0.02143 ε(u) = 0.02167

β = 2 η = 10−6 ε(s) = 0.11870 ε(s) = 0.04614 ε(s) = 0.04527 ε(s) = 0.04522 ε(s) = 0.04500

ε(u) = 0.05360 ε(u) = 0.02926 ε(u) = 0.02924 ε(u) = 0.02926 ε(u) = 0.02915

β = 1 η = 10−4 ε(s) = 0.06660 ε(s) = 0.05474 ε(s) = 0.05377 ε(s) = 0.05474 ε(s) = 0.05423

ε(u) = 0.02157 ε(u) = 0.01903 ε(u) = 0.01657 ε(u) = 0.01986 ε(u) = 0.02055

β = 5
4

η = 10−4 ε(s) = 0.02874 ε(s) = 0.01929 ε(s) = 0.01974 ε(s) = 0.02096 ε(s) = 0.01991

ε(u) = 0.01207 ε(u) = 0.01100 ε(u) = 0.01103 ε(u) = 0.01123 ε(u) = 0.01102

β = 3
2

η = 10−4 ε(s) = 0.05890 ε(s) = 0.02237 ε(s) = 0.02318 ε(s) = 0.02238 ε(s) = 0.02344

ε(u) = 0.02743 ε(u) = 0.01343 ε(u) = 0.01346 ε(u) = 0.01340 ε(u) = 0.01352

β = 7
4

η = 10−4 ε(s) = 0.10864 ε(s) = 0.04304 ε(s) = 0.03234 ε(s) = 0.03248 ε(s) = 0.03263

ε(u) = 0.04840 ε(u) = 0.02766 ε(u) = 0.02145 ε(u) = 0.02142 ε(u) = 0.02166

β = 2 η = 10−4 ε(s) = 0.11870 ε(s) = 0.04614 ε(s) = 0.04527 ε(s) = 0.04522 ε(s) = 0.04500

ε(u) = 0.05358 ε(u) = 0.02926 ε(u) = 0.02926 ε(u) = 0.02927 ε(u) = 0.02916

β = 1 η = 10−2 ε(s) = 0.07271 ε(s) = 0.06209 ε(s) = 0.06192 ε(s) = 0.06291 ε(s) = 0.06265

ε(u) = 0.02252 ε(u) = 0.02047 ε(u) = 0.02109 ε(u) = 0.01764 ε(u) = 0.02068

β = 5
4

η = 10−2 ε(s) = 0.02335 ε(s) = 0.01934 ε(s) = 0.02042 ε(s) = 0.01999 ε(s) = 0.01930

ε(u) = 0.01139 ε(u) = 0.01112 ε(u) = 0.01097 ε(u) = 0.01124 ε(u) = 0.01102

β = 3
2

η = 10−2 ε(s) = 0.05999 ε(s) = 0.02227 ε(s) = 0.02347 ε(s) = 0.02266 ε(s) = 0.02274

ε(u) = 0.02745 ε(u) = 0.01341 ε(u) = 0.01356 ε(u) = 0.01332 ε(u) = 0.01351

β = 7
4

η = 10−2 ε(s) = 0.10715 ε(s) = 0.04304 ε(s) = 0.03254 ε(s) = 0.03264 ε(s) = 0.03258

ε(u) = 0.04833 ε(u) = 0.02766 ε(u) = 0.02140 ε(u) = 0.02144 ε(u) = 0.02163

β = 2 η = 10−2 ε(s) = 0.12496 ε(s) = 0.04614 ε(s) = 0.04497 ε(s) = 0.04528 ε(s) = 0.04500

ε(u) = 0.05361 ε(u) = 0.02927 ε(u) = 0.02915 ε(u) = 0.02914 ε(u) = 0.02915

β = 1 η = 1
ε(s) = 0.15328 ε(s) = 0.14544 ε(s) = 0.14138 ε(s) = 0.14181 ε(s) = 0.14185

ε(u) = 0.03250 ε(u) = 0.03291 ε(u) = 0.02905 ε(u) = 0.03087 ε(u) = 0.02876

β = 5
4

η = 1
ε(s) = 0.15473 ε(s) = 0.14406 ε(s) = 0.14357 ε(s) = 0.14465 ε(s) = 0.13964

ε(u) = 0.03217 ε(u) = 0.03166 ε(u) = 0.03089 ε(u) = 0.03101 ε(u) = 0.03160

β = 3
2

η = 1
ε(s) = 0.15360 ε(s) = 0.14216 ε(s) = 0.14248 ε(s) = 0.14208 ε(s) = 0.14233

ε(u) = 0.03262 ε(u) = 0.03063 ε(u) = 0.02534 ε(u) = 0.02872 ε(u) = 0.03095

β = 7
4

η = 1
ε(s) = 0.15206 ε(s) = 0.14156 ε(s) = 0.13772 ε(s) = 0.14160 ε(s) = 0.14390

ε(u) = 0.03262 ε(u) = 0.03065 ε(u) = 0.03174 ε(u) = 0.03141 ε(u) = 0.03178

β = 2 η = 1
ε(s) = 0.06421 ε(s) = 0.05479 ε(s) = 0.05365 ε(s) = 0.05499 ε(s) = 0.05429

ε(u) = 0.02043 ε(u) = 0.01966 ε(u) = 0.01676 ε(u) = 0.02070 ε(u) = 0.01996

Table B.1: Overview of the relative residual error of the photon flux reconstructions for a MAP-δ
approach with varying model parameters σ, β, and η. The parameters α and q were fixed. The best
and worst residuals are printed in bold face.
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Appendix C

Fermi LAT Data analysis

C.1 Data Analysis

C.1.1 Data Selection

In this work, we analyze the 5.5 years of observational data taken by the Fermi LAT; i.e.,
data from mission weeks 9 to 296 (mission elapsed time 239,557,417 s to 413,199,625 s). The
data are subject to multiple restrictions and cuts detailed in the following.

For our analysis we exclusively consider events classified as P7REP_CLEAN_V15 in the
reprocessed Pass 7 data set. The CLEAN events, which are “cleaned” of CR interactions with
the instrument, are recommended for studies of the diffuse γ-ray emission.1 Events with
inclination angles above 52◦ and zenith angles above 100◦ are excluded in order to suppress
contaminations from CRs and the Earth’s limb (Atwood et al. 2009).2 In addition, we apply a
(non-standard) cut with respect to the angular distance to the Sun that we require to exceed
20◦. This way, almost all Solar γ-rays are rejected at the price of reducing the total number of
events by less than 3%. A similar procedure regarding the moon is conceivable but ignored,
because its contribution is negligible.

The individual events are labeled FRONT or BACK according to whether the photon has
been converted in the front or back section of the LAT instrument. We retain this labeling,
but combine those data vectors by a direct sum; i.e.,

d = d FRONT ⊕ d BACK =
(
d FRONT,d BACK

)ᵀ
. (C.1)

The selected events are binned in nine (logarithmically equally spaced) energy bins ranging
from 0.6 to 307.2 GeV, cf. Tab. 4.1. We also apply a spatial binning of the events into all-sky
count maps using a HEALPix discretization with nside = 128, which corresponds to 196,608
pixels with a size of roughly 64µsr ≈ (0.46◦)2 each.

For a proper deconvolution, our analysis has to take the LAT’s PSF and exposure into
account. The instrumental response functions of the Fermi LAT (Atwood et al. 2009; Abdo
et al. 2009; Ackermann et al. 2012a), which are essential therefor, have been improved in the
reprocessed Pass 7 release, and are available within the Fermi Science Tools. According to our
event selection, we make use of the P7REP CLEAN V15::FRONT and BACK IRFs, respectively.

1For further details regarding the Fermi LAT data products see http://fermi.gsfc.nasa.gov/ssc/data/.
2The exact filter expression reads "DATA_QUAL>0 && LAT_CONFIG==1 && ABS(ROCK ANGLE)<52 &&

ZENITH<100".

http://fermi.gsfc.nasa.gov/ssc/data/
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These can be assumed to be accurately calibrated, although further improvements, especially
at low energies, are under discussion (Portillo & Finkbeiner 2014). Given the IRFs, the
exposure (ε FRONTij , ε BACKij ) for each HEALPix pixel i and each energy band j can be retrieved
from the data archive. In order to compute ε, the Sun exposure is subtracted from the
“standard” exposure due to the chosen rejection of potential Solar events (Johannesson et al.
2013). The PSF of the Fermi LAT is a function of position and energy E. Its shape varies
slightly with spatial translation and sharpens strongly with increasing energy. The forward
application of the PSF is a linear operation that can be implemented in form of a convolution
matrix evaluating the PSF at each pixel center and for each energy band. This matrix is fairly
sparse because of the vanishing tails of the PSF, and is computed beforehand. The exposure
and the PSF define the instrument response operator R,

Rij(x) ∝ 1

(Emax
j − Emin

j )

(
ε FRONTij × PSF FRONT

i (Emid
j , x)

ε BACKij × PSF BACK
i (Emid

j , x)

)
, (C.2)

up to a proportionality constant that can absorb numerical factors and physical units. Notice
that this definition does not include a spectral convolution; i.e., there is no cross-talk between
different energy bands.

The primary target of our analysis is the physical photon flux φ = φ(x), which is a
function of position x ∈ Ω. Here, the position space Ω is the observational sphere, and the
position x might be given in spherical coordinates (ϕ, θ), or in Galactic longitude and latitude
(l, b).

The response operator R describes the mapping of a photon flux φ to λ = Rφ by a
convolution with the IRFs; i.e.,

λij =

∫
Ω

dx Rij(x)φ(x), (C.3)

where λ describes the noiseless (non-integer) number of photons one expects to observe
through the IRFs given some photon flux in the sky. This expected number of counts λ
relates to the observed (integer) photon counts d by a noise process, which is part of the
statistical model detailed in the next section.

C.1.2 Inference Algorithm

The foundation of the analysis presented in this work is the D3PO inference algorithm derived
by Selig & Enßlin (2013) that targets the denoising, deconvolution and decomposition of
photon observations. Without going into technical details, we briefly review the underlying
assumptions and characteristics of the D3PO algorithm in the following.

The observed photon count data d carries information about the astrophysical photon
flux φ, as well as noise and instrumental imprints. In order to optimally reconstruct φ given d,
we incorporate our knowledge about the actual measurement in a data model that consists of
deterministic relations and probabilistic processes. Hence, D3PO is a probabilistic algorithm
conducting Bayesian inference.

We can assume the photon counts to suffer from Poissonian shot noise; i.e., the data
entries dij are the outcomes of statistically independent Poisson processes given an expected
number of counts λij each. Especially in low photon flux regions and at high energies, where
the signal-to-noise ratios are worst, using a Poissonian likelihood allows for an accurate noise
treatment whereas Gaussian noise approximations often fail.
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Figure C.1: Graphical model of the model parameters α, q, σ, β, and η, the logarithmic angular power
spectrum τ , the diffuse and point-like signal fields, s and u, the photon fluxes, φ, φ(s), and φ(u), and
the expected and observed number of photons, λ and d.

D3PO’s deconvolution task covers the correction of all effects that trace back to the
instrumental response R. As discussed in Sect. C.1.1, this response establishes a relation
between the astrophysical photon flux φ and the expected counts λ by taking the IRFs of
the Fermi LAT fully into account. Since we suppose the IRFs to be thoroughly calibrated (to
the best of our knowledge), this relation is deterministic.

The total photon flux φ consists of many different contributions that can be divided into
two morphological classes, diffuse and point-like contributions. Diffuse emission, which is
produced by the interaction of CRs with the ISM, unresolved point sources and extragalactic
background, is characterized by spatially smooth fluctuations. On the contrary, point-like
emission is fairly local originating primarily from resolved point sources. The D3PO algorithm
reconstructs the total photon flux as the sum of a diffuse and point-like flux contribution; i.e.,

φ = φ(s) + φ(u) = φ0 (es + eu) , (C.4)

where φ0 is a constant absorbing numerical factors and flux units, and the exponentiation
is applied pixelwise to the diffuse and point-like signal fields, s and u. Those signal fields
describe the dimensionless logarithmic flux ensuring the positivity of the physical photon flux
in a natural way. Although the algorithm deals with the s and u fields for numerical reasons,
we only regard the fluxes φ(s) and φ(u) in the following as they are physical.

We can incorporate our naive understanding of “diffuse” and “point-like” by introducing
prior assumptions. Embedding a priori knowledge on the solution, of course, biases the
inference. However, priors also remedy the degeneracy of the inference problem as they
suppress counterintuitive solutions.

The diffuse photon flux φ(s), being spatially smooth, is expected to exhibit spatial corre-
lation. Without enforcing concrete spatial features, such as a Galactic profile, we assume φ(s)

to obey multivariate log-normal statistics. Assuming, furthermore, statistical homogeneity
and isotropy, the underlying covariance is determined by an a priori unknown angular power
spectrum. In order to retain a flexible handle on this power spectrum, we further introduce
hyperpriors (cf. e.g., Enßlin & Frommert 2011; Oppermann et al. 2012b; Selig & Enßlin 2013).
We assume a (asymptotically) uniform prior for the logarithmic angular power and a spectral
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smoothness prior as suggested by Oppermann et al. (2012b). This introduces scalar model
parameters α, q, and σ.

The point-like photon flux φ(u) exhibits strong features that appear to be fairly rare
and local. We assume φ(u) to follow statistically independent inverse-Gamma distributions
described by the model parameters β and η.

For a detailed derivation and discussion of the probabilistic model D3PO is based on, we
refer to Selig & Enßlin (2013). An illustrative graphical model of the introduced hierarchy of
Bayesian parameters is shown in Fig. C.1.

C.1.3 Analysis Procedure

In theory, we could apply the D3PO algorithm to the whole data set at once. However, it
is computationally more efficient to exploit the spectral separability of the response model
by applying the algorithm to each energy band individually, cf. Eq. C.2. In order to exploit
spectral correlations, we propose to align the priors of the diffuse component after an initial
inference run by defining a common angular power spectrum. This yields a three-step analysis
procedure detailed in the following.

Initial Inference: The D3PO algorithm is applied to each energy band separately, which
can be done in parallel.

We fix the model parameters with fairly soft constraints, by setting α = 1, q = 10−12,
σ = 10, β = 3

2 , and η = 10−2. The limit of (α, q) → (1, 0) leads to uniform prior for the
logarithmic angular power spectrum τ of the diffuse photon flux (Enßlin & Frommert 2011),
but choosing a non-zero q is numerically more stable. The spectral smoothness parameter
σ is the a priori standard deviation of the second derivative of τ = τ` with respect to the
logarithm of the angular quantum number `; i.e., σ describes the tolerance of deviations from
a power-law shape (Oppermann et al. 2012b). The parameter tuple (β, η) determines the
slope and scale of the inverse-Gamma prior of the point-like photon flux. While a slope of 3

2
is generally applicable, the scale, for which we find 10−2 fitting, has to be adapted according
to the chosen resolution (Selig & Enßlin 2013).

D3PO solves an inference problem that is non-linear and, in general, non-convex. To
circumvent a dependence on its initialization, D3PO can generate suitable starting values by
solving a coarse grained inference problem first. For this purpose only, we provide a binary
exposure masking the most prominent point sources.

Prior Alignment: The prior of the diffuse component describes our a priori expectation
of how spatially smooth the emission is. If we find diffuse structures of a certain size at
one energy band, we can expect to find similar structures at neighboring bands, especially
since most diffuse emission processes exhibit power-law-like energy spectra. Thus, we expect
significant spectral correlations, in particular for prominent features such as the Galactic
bulge, for example. Since the incorporation of a spectral convolution in the response is
computationally infeasible, we impose an aligning of the diffuse priors to exploit spectral
correlations, nonetheless.

The diffuse prior is defined by the logarithmic angular power spectrum τ . As discussed
in Sec. 4.3.4, we find a rough power-law behavior of the power spectra with deviations due
to the Galactic disk and finite exposure. Fig. 4.12 shows the results of the initial inference,
in particular including a power spectrum fit averaged across the energy bands. This average
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spectrum defines the aligned prior. Notice that the apparent excess of small-scale power
for high energy bands, comparing inferred and aligned power spectra, remedies potential
perception thresholds occurring during the inference (Enßlin & Frommert 2011).

Afterwards, we also align the diffuse maps within the initially masked regions according
to the aligned prior in order to avoid artifacts due to initialization.3

The alignment of the point-like priors, through β and η, has proven ineffective in tests
and is therefore omitted.

Final Inference: The D3PO algorithm is applied to each energy band separately, again.
For this run, however, we keep the (aligned) angular power spectrum fixed and provide the
aligned diffuse maps as starting values. Hence, the initially used binary mask is not required
any more. Notice that a fixed angular power spectrum renders the model parameters α, q,
and σ obsolete.

3We minimize the prior term, s†S−1s, but only for s(x|x = (ϕ, θ) ∈ mask ∧ x ∼ (`,m) 6= (2N, 0)) ensuring
the preservation of the Galactic profile and the reconstructed field values outside the mask.
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Högbom, J. A., Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines, A&AS 15
(Jun. 1974) 417, ADS

Hsieh, J. 2009, Computed Tomography Principles, Design, Artifacts, and Recent Advances, , Wiley-VCH

Hunter, J. D., Matplotlib: A 2D graphics environment, Computing In Science & Engineering 9 no. 3, (2007)
90–95

Hutchinson, M. F., A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines,
Communications in Statistics - Simulation and Computation 18 (1989) 1059–1076

Iatsenko, D., Stefanovska, A., & McClintock, P. V. E., Comment on “Inference with minimal Gibbs free energy
in information field theory”, Phys. Rev. E 85 no. 3, (Mar. 2012) 033101

Jasche, J. & Kitaura, F. S., Fast Hamiltonian sampling for large-scale structure inference, MNRAS 407 (Sep.
2010) 29–42, arXiv:0911.2496 [astro-ph.CO]

http://adsabs.harvard.edu/abs/1968BAN....20...69F
http://dblp.uni-trier.de/db/journals/pami/pami6.html#GemanG84
http://dblp.uni-trier.de/db/journals/pami/pami6.html#GemanG84
http://dx.doi.org/10.1051/0004-6361:20047011
http://arxiv.org/abs/astro-ph/0507691
http://eudml.org/doc/40894
http://dx.doi.org/10.1086/427976
http://arxiv.org/abs/arXiv:astro-ph/0409513
http://arxiv.org/abs/1312.1354
http://dx.doi.org/10.1111/j.1365-2966.2009.14739.x
http://arxiv.org/abs/0903.2342
http://dx.doi.org/10.1007/BF01456326
http://dx.doi.org/10.1007/BF01456326
http://dx.doi.org/10.1007/BF01456927
http://dx.doi.org/10.1007/BF01456927
http://adsabs.harvard.edu/abs/1982A%26AS...47....1H
http://dx.doi.org/10.1093/mnras/stt746
http://arxiv.org/abs/1210.7239
http://adsabs.harvard.edu/abs/1974A%26AS...15..417H
http://dx.doi.org/10.1080/03610918908812806
http://dx.doi.org/10.1103/PhysRevE.85.033101
http://dx.doi.org/10.1111/j.1365-2966.2010.16897.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16897.x
http://arxiv.org/abs/0911.2496


BIBLIOGRAPHY 129

Jasche, J., Kitaura, F. S., Li, C., & Enßlin, T. A., Bayesian non-linear large-scale structure inference
of the Sloan Digital Sky Survey Data Release 7, MNRAS 409 (Nov. 2010) 355–370, arXiv:0911.2498

[astro-ph.CO]

Jasche, J., Kitaura, F. S., Wandelt, B. D., & Enßlin, T. A., Bayesian power-spectrum inference for large-scale
structure data, MNRAS 406 (Jul. 2010) 60–85, arXiv:0911.2493 [astro-ph.CO]

Jasche, J. & Wandelt, B. D., Methods for Bayesian Power Spectrum Inference with Galaxy Surveys, ApJ 779
(Dec. 2013) 15, arXiv:1306.1821 [astro-ph.CO]

Jaynes, E. T., Information Theory and Statistical Mechanics, I and II, Physical Reviews 106 and 108 (1957)
620–630 and 171–190

Jaynes, E. T. 1989, Dordrecht

Johannesson, G., Orlando, E., & for the Fermi-LAT collaboration, Accounting for the Sun and the Moon in
Fermi-LAT Analysis, ArXiv e-prints (Jun. 2013), arXiv:1307.0197 [astro-ph.IM]

Johnson, T. R., Krauss, B., Sedlmair, M., et al., Material differentiation by dual energy CT: initial experience,
Eur Radiol. (Jun. 2007)

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K., An Introduction to Variational Methods for
Graphical Models, Machine Learning 37 no. 2, (Nov. 1999) 183–233

Junklewitz, H., Bell, M. A., & Enßlin, T., A new approach to multi-frequency synthesis in radio interferometry,
ArXiv e-prints (Jan. 2014), arXiv:1401.4711 [astro-ph.IM]

Junklewitz, H., Bell, M. R., Selig, M., & Enßlin, T. A., RESOLVE: A new algorithm for aperture syn-
thesis imaging of extended emission in radio astronomy, ArXiv e-prints (Nov. 2013), arXiv:1311.5282

[astro-ph.IM]

Kak, A. C. & Slaney, M. 1988, Principles of Computerized Tomographic Imaging, , IEEE Press

Kinney, J. B., Estimation of probability densities using scale-free field theories, ArXiv e-prints (Dec. 2013),
arXiv:1312.6661 [physics.data-an]

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P., Optimization by simulated annealing, Science 220 (1983)
671–680

Kitaura, F. S., Jasche, J., Li, C., et al., Cosmic cartography of the large-scale structure with Sloan Digital Sky
Survey data release 6, MNRAS 400 (Nov. 2009) 183–203, arXiv:0906.3978 [astro-ph.CO]

Kullback, S. & Leibler, R. A., On Information and Sufficiency, The Annals of Mathematical Statistics 22
no. 1, (Mar. 1951) 79–86

Laplace, P. S. 1795/1951, A philosophical essay on probabilities, Dover, New York

Large, M. I., Quigley, M. J. S., & Haslam, C. G. T., A new feature of the radio sky, MNRAS 124 (1962) 405

Longair, M. S. 2011, High Energy Astrophysics, , Cambridge University Press

Malyshev, D. & Hogg, D. W., Statistics of Gamma-Ray Point Sources below the Fermi Detection Limit,
ApJ 738 (Sep. 2011) 181, arXiv:1104.0010 [astro-ph.CO]

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E., Equation of State Calcula-
tions by Fast Computing Machines, J. Chem. Phys. 21 (Jun. 1953) 1087–1092

Metropolis, N. & Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc. 44 (1949) 335

Moskalenko, I. V. & Strong, A. W., Anisotropic Inverse Compton Scattering in the Galaxy, ApJ 528 (Jan.
2000) 357–367, astro-ph/9811284

http://dx.doi.org/10.1111/j.1365-2966.2010.17313.x
http://arxiv.org/abs/0911.2498
http://arxiv.org/abs/0911.2498
http://dx.doi.org/10.1111/j.1365-2966.2010.16610.x
http://arxiv.org/abs/0911.2493
http://dx.doi.org/10.1088/0004-637X/779/1/15
http://dx.doi.org/10.1088/0004-637X/779/1/15
http://arxiv.org/abs/1306.1821
http://arxiv.org/abs/1307.0197
http://dx.doi.org/10.1023/A:1007665907178
http://arxiv.org/abs/1401.4711
http://arxiv.org/abs/1311.5282
http://arxiv.org/abs/1311.5282
http://arxiv.org/abs/1312.6661
http://dx.doi.org/10.1111/j.1365-2966.2009.15470.x
http://arxiv.org/abs/0906.3978
http://dx.doi.org/10.1093/mnras/124.5.405
http://dx.doi.org/10.1088/0004-637X/738/2/181
http://arxiv.org/abs/1104.0010
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1086/308138
http://dx.doi.org/10.1086/308138
http://arxiv.org/abs/astro-ph/9811284


130 BIBLIOGRAPHY

Nocedal, J. & Wright, S. J. 2006, Numerical optimization, http://site.ebrary.com/id/10228772

Nolan, P. L., Abdo, A. A., Ackermann, M., et al., Fermi Large Area Telescope Second Source Catalog,
ApJS 199 (Apr. 2012) 31, arXiv:1108.1435 [astro-ph.HE]

Oliphant, T. 2006, A Guide to NumPy, , Trelgol Publishing

Oppermann, N., Junklewitz, H., Greiner, M., et al., Estimating extragalactic Faraday rotation, ArXiv e-prints
(Apr. 2014), arXiv:1404.3701 [astro-ph.IM]

Oppermann, N., Junklewitz, H., Robbers, G., et al., An improved map of the Galactic Faraday sky, A&A 542
(Jun. 2012) A93, arXiv:1111.6186 [astro-ph.GA]

Oppermann, N., Robbers, G., & Enßlin, T. A., Reconstructing signals from noisy data with unknown signal
and noise covariance, Phys. Rev. E 84 no. 4, (Oct. 2011) 041118, arXiv:1107.2384 [astro-ph.IM]

Oppermann, N., Selig, M., Bell, M. R., & Enßlin, T. A., Reconstruction of Gaussian and log-normal fields
with spectral smoothness, arXiv:1210.6866 [astro-ph.IM]

Planck Collaboration, Planck 2013 results. XI. All-sky model of thermal dust emission, ArXiv e-prints (Dec.
2013), arXiv:1312.1300

Planck Collaboration, Planck intermediate results. IX. Detection of the Galactic haze with Planck, A&A 554
(Jun. 2013) A139, arXiv:1208.5483 [astro-ph.GA]

Planck Collaboration, Planck intermediate results. XXVIII. Interstellar gas and dust in the Chamaeleon clouds
as seen by Fermi LAT and Planck, ArXiv e-prints (Sep. 2014), arXiv:1409.3268 [astro-ph.HE]

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., Planck early results. VII. The Early Release Compact
Source Catalogue, A&A 536 (Dec. 2011) A7, arXiv:1101.2041 [astro-ph.CO]

Portillo, S. K. N. & Finkbeiner, D. P., Sharper Fermi LAT Images: instrument response functions for an
improved event selection, ArXiv e-prints (Jun. 2014), arXiv:1406.0507 [astro-ph.IM]

Rau, U. & Cornwell, T. J., A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in
radio interferometry, A&A 532 (Aug. 2011) A71, arXiv:1106.2745 [astro-ph.IM]

Reinecke, M., Libpsht - algorithms for efficient spherical harmonic transforms, A&A 526 (Feb. 2011) A108,
arXiv:1010.2084 [astro-ph.IM]

Reinecke, M. & Seljebotn, D. S., Libsharp - spherical harmonic transforms revisited, ArXiv e-prints (Mar.
2013), arXiv:1303.4945 [physics.comp-ph]

Schmitt, J., Starck, J. L., Casandjian, J. M., Fadili, J., & Grenier, I., Poisson denoising on the sphere: applica-
tion to the Fermi gamma ray space telescope, A&A 517 (Jul. 2010) A26, arXiv:1003.5613 [astro-ph.IM]

Schmitt, J., Starck, J. L., Casandjian, J. M., Fadili, J., & Grenier, I., Multichannel Poisson denoising and
deconvolution on the sphere: application to the Fermi Gamma-ray Space Telescope, A&A 546 (Oct. 2012)
A114, arXiv:1206.2787 [astro-ph.IM]

Selig, M., Bell, M. R., Junklewitz, H., et al., NIFTY - Numerical Information Field Theory - a versatile Python
library for signal inference, A&A 554 (Apr. 2013) A26, arXiv:1301.4499 [astro-ph.IM]

Selig, M. & Enßlin, T. A., Denoising, Deconvolving, and Decomposing Photon Observations, arXiv:1311.1888
[astro-ph.IM]

Selig, M., Oppermann, N., & Enßlin, T. A., Improving stochastic estimates with inference methods: calculating
matrix diagonals, Phys. Rev. E 85 no. 2, (Feb. 2012) 021134, arXiv:1108.0600 [astro-ph.IM]

Selig, M., Vacca, V., Oppermann, N., & Enßlin, T. A., The Denoised, Deconvolved, and Decomposed Fermi
gamma-ray Sky, arXiv:1410.4562 [astro-ph.HE]

http://site.ebrary.com/id/10228772
http://dx.doi.org/10.1088/0067-0049/199/2/31
http://arxiv.org/abs/1108.1435
http://arxiv.org/abs/1404.3701
http://dx.doi.org/10.1051/0004-6361/201118526
http://dx.doi.org/10.1051/0004-6361/201118526
http://arxiv.org/abs/1111.6186
http://dx.doi.org/10.1103/PhysRevE.84.041118
http://arxiv.org/abs/1107.2384
http://arxiv.org/abs/1210.6866
http://arxiv.org/abs/1312.1300
http://dx.doi.org/10.1051/0004-6361/201220271
http://dx.doi.org/10.1051/0004-6361/201220271
http://arxiv.org/abs/1208.5483
http://arxiv.org/abs/1409.3268
http://dx.doi.org/10.1051/0004-6361/201116474
http://arxiv.org/abs/1101.2041
http://arxiv.org/abs/1406.0507
http://dx.doi.org/10.1051/0004-6361/201117104
http://arxiv.org/abs/1106.2745
http://dx.doi.org/10.1051/0004-6361/201015906
http://arxiv.org/abs/1010.2084
http://arxiv.org/abs/1303.4945
http://dx.doi.org/10.1051/0004-6361/200913822
http://arxiv.org/abs/1003.5613
http://dx.doi.org/10.1051/0004-6361/201118234
http://dx.doi.org/10.1051/0004-6361/201118234
http://arxiv.org/abs/1206.2787
http://dx.doi.org/10.1051/0004-6361/201321236
http://arxiv.org/abs/1301.4499
http://arxiv.org/abs/1311.1888
http://arxiv.org/abs/1311.1888
http://dx.doi.org/10.1103/PhysRevE.85.021134
http://arxiv.org/abs/1108.0600
http://arxiv.org/abs/1410.4562


BIBLIOGRAPHY 131

Seljebotn, D. S., Fast numerical computations with Cython, in Proceedings of the 8th Python in Science
Conference, Pasadena, CA USA. 2009, 15 – 22

Shannon, C. E., A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379–423

Shewchuk, J. R., An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Technical
report, Carnegie Mellon University, Pittsburgh, PA (1994)

Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al., EGRET Observations of the Extragalactic Gamma-Ray
Emission, ApJ 494 (Feb. 1998) 523–534, astro-ph/9709257

Strong, A. W., Maximum Entropy imaging with INTEGRAL/SPI data, A&A 411 (Nov. 2003) L127–L129

Strong, A. W., Moskalenko, I. V., & Reimer, O., Diffuse Continuum Gamma Rays from the Galaxy, ApJ 537
(Jul. 2000) 763–784, astro-ph/9811296

Strong, A. W., Orlando, E., & Jaffe, T. R., The interstellar cosmic-ray electron spectrum from synchrotron
radiation and direct measurements, A&A 534 (Oct. 2011) A54, arXiv:1108.4822 [astro-ph.HE]

Su, M. & Finkbeiner, D. P., Evidence for Gamma-Ray Jets in the Milky Way, ApJ 753 (Jul. 2012) 61,
arXiv:1205.5852 [astro-ph.HE]

Su, M., Slatyer, T. R., & Finkbeiner, D. P., Giant Gamma-ray Bubbles from Fermi-LAT: Active Galac-
tic Nucleus Activity or Bipolar Galactic Wind?, ApJ 724 (Dec. 2010) 1044–1082, arXiv:1005.5480

[astro-ph.HE]

Transtrum, M. K., Machta, B. B., & Sethna, J. P., Why are Nonlinear Fits to Data so Challenging?, Physical
Review Letters 104 no. 6, (Feb. 2010) 060201, arXiv:0909.3884 [cond-mat.stat-mech]

Transtrum, M. K. & Sethna, J. P., Improvements to the Levenberg-Marquardt algorithm for nonlinear least-
squares minimization, ArXiv e-prints (Jan. 2012), arXiv:1201.5885 [physics.data-an]
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